Exposing animals to an enriched environment (EE) has dramatic effects on brain structure, function, and plasticity. The poorly known "EE-derived signals'' mediating the EE effects are thought to be generated within the central nervous system. Here, we shift the focus to the body periphery, revealing that gut microbiota signals are crucial for EE-driven plasticity. Developmental analysis reveals striking differences in intestinal bacteria composition between EE and standard rearing (ST) mice, as well as enhanced levels of short-chain fatty acids (SCFA) in EE mice. Depleting the microbiota of EE mice with antibiotics strongly decreases SCFA and prevents activation of adult ocular dominance plasticity, spine dynamics, and microglia rearrangement. SCFA treatment in ST mice mimics EE induction of ocular dominance plasticity and microglial remodeling. Remarkably, transferring the microbiota of EE mice to ST recipients activates adult ocular dominance plasticity. Thus, experience-dependent changes in gut microbiota regulate brain plasticity.
The gut microbiota of environmentally enriched mice regulates visual cortical plasticity / Leonardo Lupori , Sara Cornuti , Raffaele Mazziotti , Elisa Borghi , Emerenziana Ottaviano , Michele Dei Cas , Giulia Sagona , Tommaso Pizzorusso , Paola Tognini. - In: CELL REPORTS. - ISSN 2211-1247. - ELETTRONICO. - (2021), pp. 0-0. [10.1016/j.celrep.2021.110212]
The gut microbiota of environmentally enriched mice regulates visual cortical plasticity
Raffaele Mazziotti;Giulia Sagona;Tommaso Pizzorusso;
2021
Abstract
Exposing animals to an enriched environment (EE) has dramatic effects on brain structure, function, and plasticity. The poorly known "EE-derived signals'' mediating the EE effects are thought to be generated within the central nervous system. Here, we shift the focus to the body periphery, revealing that gut microbiota signals are crucial for EE-driven plasticity. Developmental analysis reveals striking differences in intestinal bacteria composition between EE and standard rearing (ST) mice, as well as enhanced levels of short-chain fatty acids (SCFA) in EE mice. Depleting the microbiota of EE mice with antibiotics strongly decreases SCFA and prevents activation of adult ocular dominance plasticity, spine dynamics, and microglia rearrangement. SCFA treatment in ST mice mimics EE induction of ocular dominance plasticity and microglial remodeling. Remarkably, transferring the microbiota of EE mice to ST recipients activates adult ocular dominance plasticity. Thus, experience-dependent changes in gut microbiota regulate brain plasticity.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2211124721017162-main.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
4.36 MB
Formato
Adobe PDF
|
4.36 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.