In this contribution we consider nonlinear equations with Euclidean or Minkowskii mean curvature operator and show how these equations has a proximity property with respect to hal-linear equations, extending some results known for linear equations. In particular, sufficient conditions for oscillation and for the existence of positive decreasing solutions are presented.

Asymptotic Proximity Between Equations with Mean Curvature Operator and Linear Equation / Zuzana Dosla, Serena Matucci, Mauro Marini. - ELETTRONICO. - 2:(2023), pp. 30-34. (Intervento presentato al convegno International Workshop on the Qualitative Theory of Differential Equations "QUALITDE – 2023" tenutosi a Tbilisi, Georgia nel 9 - 11 Dicembre 2023).

Asymptotic Proximity Between Equations with Mean Curvature Operator and Linear Equation

Zuzana Dosla;Serena Matucci;Mauro Marini
2023

Abstract

In this contribution we consider nonlinear equations with Euclidean or Minkowskii mean curvature operator and show how these equations has a proximity property with respect to hal-linear equations, extending some results known for linear equations. In particular, sufficient conditions for oscillation and for the existence of positive decreasing solutions are presented.
2023
Reports of QUALITDE
International Workshop on the Qualitative Theory of Differential Equations "QUALITDE – 2023"
Tbilisi, Georgia
9 - 11 Dicembre 2023
Zuzana Dosla, Serena Matucci, Mauro Marini
File in questo prodotto:
File Dimensione Formato  
Dosla_Marini_Matucci_workshop_2023.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 69.96 kB
Formato Adobe PDF
69.96 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1348331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact