In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new “nonorthogonality” type of condition. We prove global convergence to stationary points when using an Armijo line search in the given framework. We further describe three different examples of active-set gradient related directions that guarantee linear convergence rate (under suitable assumptions). Finally, we report numerical experiments showing the effectiveness of the approach.

An active-set algorithmic framework for non-convex optimization problems over the simplex / Cristofari A.; De Santis M.; Lucidi S.; Rinaldi F.. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - (2020). [10.1007/s10589-020-00195-x]

An active-set algorithmic framework for non-convex optimization problems over the simplex

De Santis M.;Lucidi S.;
2020

Abstract

In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new “nonorthogonality” type of condition. We prove global convergence to stationary points when using an Armijo line search in the given framework. We further describe three different examples of active-set gradient related directions that guarantee linear convergence rate (under suitable assumptions). Finally, we report numerical experiments showing the effectiveness of the approach.
2020
Cristofari A.; De Santis M.; Lucidi S.; Rinaldi F.
File in questo prodotto:
File Dimensione Formato  
Cristofari_Preprint_An-Active-set_2020.pdf

accesso aperto

Tipologia: Preprint (Submitted version)
Licenza: Open Access
Dimensione 701.17 kB
Formato Adobe PDF
701.17 kB Adobe PDF
Cristofari_An-Active-set_2020.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1350106
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact