We study some properties of SU(n) endowed with the Frobenius metric f, which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on SU(n). In particular we express the distance between P, Q in SU(n) in terms of eigenvalues of P*Q; we compute the diameter of (SU(n), f) and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints P, Q can be parametrized by means of a compact connected submanifold of su(n), diffeomorphic to a suitable complex Grassmannian depending on P and Q.

Some Riemannian properties of SU_n endowed with a bi-invariant metric / Donato Pertici ; Alberto Dolcetti. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 204:(2025), pp. 1003-1017. [10.1007/s10231-024-01516-1]

Some Riemannian properties of SU_n endowed with a bi-invariant metric

Donato Pertici;Alberto Dolcetti
2025

Abstract

We study some properties of SU(n) endowed with the Frobenius metric f, which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on SU(n). In particular we express the distance between P, Q in SU(n) in terms of eigenvalues of P*Q; we compute the diameter of (SU(n), f) and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints P, Q can be parametrized by means of a compact connected submanifold of su(n), diffeomorphic to a suitable complex Grassmannian depending on P and Q.
2025
204
1003
1017
Donato Pertici ; Alberto Dolcetti
File in questo prodotto:
File Dimensione Formato  
M1 Pertici-Dolcetti-AMPA.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 354.37 kB
Formato Adobe PDF
354.37 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1350412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact