We study some properties of SU(n) endowed with the Frobenius metric f, which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on SU(n). In particular we express the distance between P, Q in SU(n) in terms of eigenvalues of P*Q; we compute the diameter of (SU(n), f) and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints P, Q can be parametrized by means of a compact connected submanifold of su(n), diffeomorphic to a suitable complex Grassmannian depending on P and Q.
Some Riemannian properties of SU_n endowed with a bi-invariant metric / Donato Pertici ; Alberto Dolcetti. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 204:(2025), pp. 1003-1017. [10.1007/s10231-024-01516-1]
Some Riemannian properties of SU_n endowed with a bi-invariant metric
Donato Pertici;Alberto Dolcetti
2025
Abstract
We study some properties of SU(n) endowed with the Frobenius metric f, which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on SU(n). In particular we express the distance between P, Q in SU(n) in terms of eigenvalues of P*Q; we compute the diameter of (SU(n), f) and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints P, Q can be parametrized by means of a compact connected submanifold of su(n), diffeomorphic to a suitable complex Grassmannian depending on P and Q.| File | Dimensione | Formato | |
|---|---|---|---|
|
M1 Pertici-Dolcetti-AMPA.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
354.37 kB
Formato
Adobe PDF
|
354.37 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



