We review some geometric criteria and prove a refined version, that yield existence of capillary surfaces in tubes $\Omega\times \mathbb{R}$ in a gravity free environment, in the case of physical interest, that is, for bounded, open, and simply connected $\Omega \subset \mathbb{R}^2$. These criteria rely on suitable weak one-sided bounds on the curvature of the boundary of the cross-section $\Omega$.
Geometric criteria for the existence of capillary surfaces in tubes / Saracco G.. - In: EXPOSITIONES MATHEMATICAE. - ISSN 0723-0869. - STAMPA. - 42:(2024), pp. 125547.1-125547.16. [10.1016/j.exmath.2024.125547]
Geometric criteria for the existence of capillary surfaces in tubes
Saracco G.
2024
Abstract
We review some geometric criteria and prove a refined version, that yield existence of capillary surfaces in tubes $\Omega\times \mathbb{R}$ in a gravity free environment, in the case of physical interest, that is, for bounded, open, and simply connected $\Omega \subset \mathbb{R}^2$. These criteria rely on suitable weak one-sided bounds on the curvature of the boundary of the cross-section $\Omega$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2024 - Geometric criteria for the existence of capillary surfaces in tubes - Saracco.pdf
accesso aperto
Descrizione: OA final version
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
374.46 kB
Formato
Adobe PDF
|
374.46 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.