Given a landslide, which are the constituent materials? How are the material inhomogeneities distributed? Which are their properties? What are the deformation processes? How large are the boundaries or how depth is/are the slip surface/s? Answering these questions is not a simple goal. On the basis of the more recent landslides classification by Hungr et al. dated 2014, an analysis of about 120 open access papers published in international journals between the 2007 and the 2018 has been carried out. The aim of this review work was to evaluate the geophysical community efforts in overcoming the geophysical technique limitations highlighted in the conclusion sectionof the review of 2007 by Jongmans and Garambois. These drawback can be summarized ad follow: 1) geophysicists have to make an effort in the presentation of their results; 2) the resolution and the penetration depth of each method are not systematically discussed in an understandable way; 3) the geological interpretation of geophysical data should be more clearly and critically explained; 4) the challenge for geophysicists is to convince geologists and engineers that 3D and 4D geophysical imaging techniques can be valuable tools for investigating and monitoring landslides; and 5) efforts should also be made towards obtaining quantitative information from geophysics in terms of geotechnical parameters and hydrological properties.

Landslides and Geophysics: a review of the advantages and limitations on the basis of the last twelve years open access international literature / Morelli S.; Pazzi V.; Fanti R.. - ELETTRONICO. - (2020), pp. 1-2. [10.5194/egusphere-egu2020-5236]

Landslides and Geophysics: a review of the advantages and limitations on the basis of the last twelve years open access international literature

Morelli S.;Pazzi V.;Fanti R.
2020

Abstract

Given a landslide, which are the constituent materials? How are the material inhomogeneities distributed? Which are their properties? What are the deformation processes? How large are the boundaries or how depth is/are the slip surface/s? Answering these questions is not a simple goal. On the basis of the more recent landslides classification by Hungr et al. dated 2014, an analysis of about 120 open access papers published in international journals between the 2007 and the 2018 has been carried out. The aim of this review work was to evaluate the geophysical community efforts in overcoming the geophysical technique limitations highlighted in the conclusion sectionof the review of 2007 by Jongmans and Garambois. These drawback can be summarized ad follow: 1) geophysicists have to make an effort in the presentation of their results; 2) the resolution and the penetration depth of each method are not systematically discussed in an understandable way; 3) the geological interpretation of geophysical data should be more clearly and critically explained; 4) the challenge for geophysicists is to convince geologists and engineers that 3D and 4D geophysical imaging techniques can be valuable tools for investigating and monitoring landslides; and 5) efforts should also be made towards obtaining quantitative information from geophysics in terms of geotechnical parameters and hydrological properties.
2020
File in questo prodotto:
File Dimensione Formato  
2020 Morelli et al - EGU.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 292.37 kB
Formato Adobe PDF
292.37 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1354799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact