This paper deals with multi-object fusion in the presence of misbehaving sensor nodes, due to faults or adversarial attacks. In this setting, the main challenge is to identify and then remove messages coming from corrupted nodes. To this end, a three-step method is proposed, where the first step consists of choosing a reference density among the received ones on the basis of a minimum upper median divergence criterion. Then, thresholding on the divergence from the reference density is performed to derive a subset of densities to be fused. Finally, the remaining densities are fused following either the generalized covariance intersection (GCI) or minimum information loss (MIL) criterion. The implementation of the proposed method for resilient fusion of labeled multi-Bernoulli densities is also discussed. Finally, the performance of the proposed approach is assessed via simulation experiments on centralized and decentralized multi-target tracking case studies.

Median-based resilient multi-object fusion with application to LMB densities / Yao Zhou, Giorgio Battistelli, Luigi Chisci, Lin Gao, Gaiyou Li, Ping Wei. - In: IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS. - ISSN 2373-776X. - ELETTRONICO. - 10:(2024), pp. 473-486. [10.1109/TSIPN.2024.3388951]

Median-based resilient multi-object fusion with application to LMB densities

Giorgio Battistelli;Luigi Chisci;Lin Gao;
2024

Abstract

This paper deals with multi-object fusion in the presence of misbehaving sensor nodes, due to faults or adversarial attacks. In this setting, the main challenge is to identify and then remove messages coming from corrupted nodes. To this end, a three-step method is proposed, where the first step consists of choosing a reference density among the received ones on the basis of a minimum upper median divergence criterion. Then, thresholding on the divergence from the reference density is performed to derive a subset of densities to be fused. Finally, the remaining densities are fused following either the generalized covariance intersection (GCI) or minimum information loss (MIL) criterion. The implementation of the proposed method for resilient fusion of labeled multi-Bernoulli densities is also discussed. Finally, the performance of the proposed approach is assessed via simulation experiments on centralized and decentralized multi-target tracking case studies.
2024
10
473
486
Goal 9: Industry, Innovation, and Infrastructure
Yao Zhou, Giorgio Battistelli, Luigi Chisci, Lin Gao, Gaiyou Li, Ping Wei
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1361132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact