We define a very general notion of regularity for functions taking values in an alternative real ⁎-algebra. Over Clifford numbers, this notion subsumes the well-established notions of monogenic function and slice-monogenic function. Over quaternions, in addition to subsuming the notions of Fueter-regular function and of slice-regular function, it gives rise to an entirely new theory, which we develop in some detail.
A unified notion of regularity in one hypercomplex variable / Ghiloni R.; Stoppato C.. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - ELETTRONICO. - 202:(2024), pp. 105219.1-105219.13. [10.1016/j.geomphys.2024.105219]
A unified notion of regularity in one hypercomplex variable
Ghiloni R.;Stoppato C.
2024
Abstract
We define a very general notion of regularity for functions taking values in an alternative real ⁎-algebra. Over Clifford numbers, this notion subsumes the well-established notions of monogenic function and slice-monogenic function. Over quaternions, in addition to subsuming the notions of Fueter-regular function and of slice-regular function, it gives rise to an entirely new theory, which we develop in some detail.File | Dimensione | Formato | |
---|---|---|---|
PublishedOnlineVersion.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Solo lettura
Dimensione
413.83 kB
Formato
Adobe PDF
|
413.83 kB | Adobe PDF | Richiedi una copia |
2309.02891.pdf
accesso aperto
Tipologia:
Preprint (Submitted version)
Licenza:
Tutti i diritti riservati
Dimensione
260.59 kB
Formato
Adobe PDF
|
260.59 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.