We construct new 3-dimensional variants of the classical Diederich-Fornæss worm domain. We show that they are smoothly bounded, pseudoconvex, and have nontrivial Nebenhülle. We also show that their Bergman projections do not preserve the Sobolev space for sufficiently large Sobolev indices.

On a higher-dimensional worm domain and its geometric properties / Steven G. Krantz; Marco M. Peloso; Caterina Stoppato. - ELETTRONICO. - (2024).

On a higher-dimensional worm domain and its geometric properties

Caterina Stoppato
2024

Abstract

We construct new 3-dimensional variants of the classical Diederich-Fornæss worm domain. We show that they are smoothly bounded, pseudoconvex, and have nontrivial Nebenhülle. We also show that their Bergman projections do not preserve the Sobolev space for sufficiently large Sobolev indices.
2024
Steven G. Krantz; Marco M. Peloso; Caterina Stoppato...espandi
File in questo prodotto:
File Dimensione Formato  
2406.04905v1.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 376.71 kB
Formato Adobe PDF
376.71 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1363092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact