: Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria. We propose an optical method to quantify the expression level of the AcrAB-TolC pump within the biofilm volume at the sub-cellular level, with single-molecule sensitivity. Through a combination of super-resolution PALM with single objective light sheet and precision genome editing, we can directly quantify the spatial distribution of endogenous AcrAB-TolC pumps expressed in both planktonic bacteria and, importantly, within the bacterial biofilm volume. We observe a gradient of pump density within the biofilm volume and over the course of biofilm maturation. Notably, we propose an optical method that could be broadly employed to achieve volumetric super-resolution imaging of thick samples.

Highly inclined light sheet allows volumetric super-resolution imaging of efflux pumps distribution in bacterial biofilms / Vignolini, T.; Capitanio, M.; Caldini, C.; Gardini, L.; Pavone, F. S.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 14:(2024), pp. 1-10. [10.1038/s41598-024-63729-x]

Highly inclined light sheet allows volumetric super-resolution imaging of efflux pumps distribution in bacterial biofilms

Capitanio, M.;Caldini, C.;Pavone, F. S.
2024

Abstract

: Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria. We propose an optical method to quantify the expression level of the AcrAB-TolC pump within the biofilm volume at the sub-cellular level, with single-molecule sensitivity. Through a combination of super-resolution PALM with single objective light sheet and precision genome editing, we can directly quantify the spatial distribution of endogenous AcrAB-TolC pumps expressed in both planktonic bacteria and, importantly, within the bacterial biofilm volume. We observe a gradient of pump density within the biofilm volume and over the course of biofilm maturation. Notably, we propose an optical method that could be broadly employed to achieve volumetric super-resolution imaging of thick samples.
2024
14
1
10
Vignolini, T.; Capitanio, M.; Caldini, C.; Gardini, L.; Pavone, F. S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1363695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact