In this paper we study centroid, orthocenter, circumcenter and incenter for a geodesic triangle in non-Euclidean geometry and we discuss the existence of the Euler line in this context. Moreover we give simple proofs of the existence of a totally geodesic 2-dimensional submanifold containing a given geodesic triangle in the hyperbolic or spherical 3-dimensional geometry.

On geodesic triangles in non-Euclidean geometry / Antonella Nannicini; Donato Pertici. - In: FOUNDATIONS. - ISSN 2673-9321. - STAMPA. - 4:(2024), pp. 468-487. [10.3390/foundations4040030]

On geodesic triangles in non-Euclidean geometry

Antonella Nannicini;Donato Pertici
2024

Abstract

In this paper we study centroid, orthocenter, circumcenter and incenter for a geodesic triangle in non-Euclidean geometry and we discuss the existence of the Euler line in this context. Moreover we give simple proofs of the existence of a totally geodesic 2-dimensional submanifold containing a given geodesic triangle in the hyperbolic or spherical 3-dimensional geometry.
2024
4
468
487
Antonella Nannicini; Donato Pertici
File in questo prodotto:
File Dimensione Formato  
versione pubblicata.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 302.63 kB
Formato Adobe PDF
302.63 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1375132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact