A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 mu M) and an extended linear range (0.5-1500 mu M). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.
Laser-induced 2D/0D graphene-nanoceria freestanding paper-based films for on-site hydrogen peroxide monitoring in no-touch disinfection treatments / Pidal, José M. Gordón; Fiori, Selene; Scroccarello, Annalisa; Della Pelle, Flavio; Maggio, Francesca; Serio, Annalisa; Ferraro, Giovanni; Escarpa, Alberto; Compagnone, Dario. - In: MIKROCHIMICA ACTA. - ISSN 0026-3672. - ELETTRONICO. - 191:(2024), pp. 361.0-361.0. [10.1007/s00604-024-06427-9]
Laser-induced 2D/0D graphene-nanoceria freestanding paper-based films for on-site hydrogen peroxide monitoring in no-touch disinfection treatments
Ferraro, Giovanni;
2024
Abstract
A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 mu M) and an extended linear range (0.5-1500 mu M). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.File | Dimensione | Formato | |
---|---|---|---|
s00604-024-06427-9.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.