This work is concerned with a Pólya-Szegö type inequality for anisotropic functionals of Sobolev functions. The relevant inequality entails a double-symmetrization involving both trial functions and functionals. A new approach that uncovers geometric aspects of the inequality is proposed. It relies upon anisotropic isoperimetric inequalities, fine properties of Sobolev functions, and results from the Brunn-Minkowski theory of convex bodies. Importantly, unlike previously available proofs, the one offered in this paper does not require approximation arguments and hence allows for a characterization of extremal functions.
Anisotropic symmetrization, convex bodies, and isoperimetric inequalities / Gabriele Bianchi; Andrea Cianchi; Paolo Gronchi. - In: ADVANCES IN MATHEMATICS. - ISSN 1090-2082. - STAMPA. - -:(In corso di stampa), pp. 0-0. [10.48550/arXiv.2411.01290]
Anisotropic symmetrization, convex bodies, and isoperimetric inequalities
Gabriele Bianchi;Andrea Cianchi;Paolo Gronchi
In corso di stampa
Abstract
This work is concerned with a Pólya-Szegö type inequality for anisotropic functionals of Sobolev functions. The relevant inequality entails a double-symmetrization involving both trial functions and functionals. A new approach that uncovers geometric aspects of the inequality is proposed. It relies upon anisotropic isoperimetric inequalities, fine properties of Sobolev functions, and results from the Brunn-Minkowski theory of convex bodies. Importantly, unlike previously available proofs, the one offered in this paper does not require approximation arguments and hence allows for a characterization of extremal functions.File | Dimensione | Formato | |
---|---|---|---|
BCG_Klimov5b_pulito_e_inviato_arxiv.pdf
accesso aperto
Tipologia:
Preprint (Submitted version)
Licenza:
Tutti i diritti riservati
Dimensione
363.58 kB
Formato
Adobe PDF
|
363.58 kB | Adobe PDF | |
BCG_Klimov_accettato_pulito.pdf
embargo fino al 14/12/2026
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
365.15 kB
Formato
Adobe PDF
|
365.15 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.