This work is concerned with a Pólya-Szegö type inequality for anisotropic functionals of Sobolev functions. The relevant inequality entails a double-symmetrization involving both trial functions and functionals. A new approach that uncovers geometric aspects of the inequality is proposed. It relies upon anisotropic isoperimetric inequalities, fine properties of Sobolev functions, and results from the Brunn-Minkowski theory of convex bodies. Importantly, unlike previously available proofs, the one offered in this paper does not require approximation arguments and hence allows for a characterization of extremal functions.

Anisotropic symmetrization, convex bodies, and isoperimetric inequalities / Gabriele Bianchi; Andrea Cianchi; Paolo Gronchi. - In: ADVANCES IN MATHEMATICS. - ISSN 1090-2082. - STAMPA. - -:(In corso di stampa), pp. 0-0. [10.48550/arXiv.2411.01290]

Anisotropic symmetrization, convex bodies, and isoperimetric inequalities

Gabriele Bianchi;Andrea Cianchi;Paolo Gronchi
In corso di stampa

Abstract

This work is concerned with a Pólya-Szegö type inequality for anisotropic functionals of Sobolev functions. The relevant inequality entails a double-symmetrization involving both trial functions and functionals. A new approach that uncovers geometric aspects of the inequality is proposed. It relies upon anisotropic isoperimetric inequalities, fine properties of Sobolev functions, and results from the Brunn-Minkowski theory of convex bodies. Importantly, unlike previously available proofs, the one offered in this paper does not require approximation arguments and hence allows for a characterization of extremal functions.
In corso di stampa
-
0
0
Gabriele Bianchi; Andrea Cianchi; Paolo Gronchi
File in questo prodotto:
File Dimensione Formato  
BCG_Klimov5b_pulito_e_inviato_arxiv.pdf

accesso aperto

Tipologia: Preprint (Submitted version)
Licenza: Tutti i diritti riservati
Dimensione 363.58 kB
Formato Adobe PDF
363.58 kB Adobe PDF
BCG_Klimov_accettato_pulito.pdf

embargo fino al 14/12/2026

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 365.15 kB
Formato Adobe PDF
365.15 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1403906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact