Advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryoEM) have revealed the polymorphic nature of the amyloid state of proteins. Given the association of amyloid with protein misfolding disorders, it is important to understand the principles underlying this polymorphism. To address this problem, we combined computational tools to predict the specific regions of the sequence forming the β-spine of amyloid fibrils with the availability of 30, 83 and 24 amyloid structures deposited in the Protein Data Bank (PDB) and Amyloid Atlas (AA) for the amyloid β (Aβ) peptide, α-synuclein (αS), and the 4R isoforms of tau, associated with Alzheimer's disease, Parkinson's disease, and various tauopathies, respectively. This approach enabled a statistical analysis of sequences forming β-sheet regions in amyloid polymorphs. We computed for any given sequence residue n the fraction of PDB/AA structures in which that residue adopts a β-sheet conformation (Fβ(n)) to generate an experimental, structure-based profile of Fβ(n) vs n, which represents the β-conformational preference of any residue in the amyloid state. The peaks in the respective Fβ(n) profiles of the three proteins, corresponding to sequence regions adopting more frequently the β-sheet structural core in the various fibrillar structures, align very well with the peaks identified with five predictive algorithms (ZYGGREGATOR, TANGO, PASTA, AGGRESCAN, WALTZ). These results indicate that, despite amyloid polymorphism, sequence regions most often forming the structural core of amyloid have high hydrophobicity, high intrinsic β-sheet propensity and low electrostatic charge across the sequence, as rationalised and predicted by the algorithms.

Structural Commonalities Determined by Physicochemical Principles in the Complex Polymorphism of the Amyloid State of Proteins / Errico, Silvia; Fani, Giulia; Ventura, Salvador; Schymkowitz, Joost; Rousseau, Frederic; Trovato, Antonio; Vendruscolo, Michele; Bemporad, Francesco; Chiti, Fabrizio. - In: BIOCHEMICAL JOURNAL. - ISSN 0264-6021. - ELETTRONICO. - (2024), pp. 87-101. [10.1042/BCJ20240602]

Structural Commonalities Determined by Physicochemical Principles in the Complex Polymorphism of the Amyloid State of Proteins

Errico, Silvia;Fani, Giulia;Bemporad, Francesco
;
Chiti, Fabrizio
2024

Abstract

Advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryoEM) have revealed the polymorphic nature of the amyloid state of proteins. Given the association of amyloid with protein misfolding disorders, it is important to understand the principles underlying this polymorphism. To address this problem, we combined computational tools to predict the specific regions of the sequence forming the β-spine of amyloid fibrils with the availability of 30, 83 and 24 amyloid structures deposited in the Protein Data Bank (PDB) and Amyloid Atlas (AA) for the amyloid β (Aβ) peptide, α-synuclein (αS), and the 4R isoforms of tau, associated with Alzheimer's disease, Parkinson's disease, and various tauopathies, respectively. This approach enabled a statistical analysis of sequences forming β-sheet regions in amyloid polymorphs. We computed for any given sequence residue n the fraction of PDB/AA structures in which that residue adopts a β-sheet conformation (Fβ(n)) to generate an experimental, structure-based profile of Fβ(n) vs n, which represents the β-conformational preference of any residue in the amyloid state. The peaks in the respective Fβ(n) profiles of the three proteins, corresponding to sequence regions adopting more frequently the β-sheet structural core in the various fibrillar structures, align very well with the peaks identified with five predictive algorithms (ZYGGREGATOR, TANGO, PASTA, AGGRESCAN, WALTZ). These results indicate that, despite amyloid polymorphism, sequence regions most often forming the structural core of amyloid have high hydrophobicity, high intrinsic β-sheet propensity and low electrostatic charge across the sequence, as rationalised and predicted by the algorithms.
2024
87
101
Errico, Silvia; Fani, Giulia; Ventura, Salvador; Schymkowitz, Joost; Rousseau, Frederic; Trovato, Antonio; Vendruscolo, Michele; Bemporad, Francesco; ...espandi
File in questo prodotto:
File Dimensione Formato  
bcj-2024-0602.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1411152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact