Freight wagons in Europe have used Y25 bogies since the 1960s. Although very cost-effective, Y25 suffers from intrinsic limitations due to its architecture and running behaviour. This study introduces an innovative lightweight bogie, named 4L bogie, aimed at removing those limitations as well as improving running dynamics and track friendliness. This task was particularly challenging as the high ratio between laden and tare weight (up to 5:1) forced us to use a non-conventional suspension system and an innovative architecture of frame, reducing the mass by about 15% and the yaw moment of inertia by about 30% with respect to the Y25 bogie. Maintenance issues were addressed by reducing the number of components and easing overhaul, while the new design was validated from both the structural and the running dynamics point of view, assessing its interaction with the track in terms of stability, curving behaviour and the vertical response of the 4L bogie. Stability was improved by about 20% even in empty conditions and high conicity at the wheel/rail contact. Vertical dynamic force on a straight track, evaluated according to the Ride Force Count metric, and wear behaviour on sharp and mild curves were considerably reduced, leading to an improved track friendliness of the bogie.

Vertical and Lateral Dynamics of 4L Freight Bogie / Megna, Gianluca. - In: DYNAMICS. - ISSN 2673-8716. - ELETTRONICO. - 4:(2024), pp. 554-571. [10.3390/dynamics4030029]

Vertical and Lateral Dynamics of 4L Freight Bogie

Megna, Gianluca
2024

Abstract

Freight wagons in Europe have used Y25 bogies since the 1960s. Although very cost-effective, Y25 suffers from intrinsic limitations due to its architecture and running behaviour. This study introduces an innovative lightweight bogie, named 4L bogie, aimed at removing those limitations as well as improving running dynamics and track friendliness. This task was particularly challenging as the high ratio between laden and tare weight (up to 5:1) forced us to use a non-conventional suspension system and an innovative architecture of frame, reducing the mass by about 15% and the yaw moment of inertia by about 30% with respect to the Y25 bogie. Maintenance issues were addressed by reducing the number of components and easing overhaul, while the new design was validated from both the structural and the running dynamics point of view, assessing its interaction with the track in terms of stability, curving behaviour and the vertical response of the 4L bogie. Stability was improved by about 20% even in empty conditions and high conicity at the wheel/rail contact. Vertical dynamic force on a straight track, evaluated according to the Ride Force Count metric, and wear behaviour on sharp and mild curves were considerably reduced, leading to an improved track friendliness of the bogie.
2024
4
554
571
Megna, Gianluca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1413753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact