This book provides a comprehensive and self-contained introduction to the study of the Cauchy problem and unique continuation properties for partial differential equations. Aimed at graduate and advanced undergraduate students, it bridges foundational concepts such as Lebesgue measure theory, functional analysis, and partial differential equations with advanced topics like stability estimates in inverse problems and quantitative unique continuation. By presenting detailed proofs and illustrative examples, the text equips readers with a deeper understanding of these fundamental topics and their applications in mathematical analysis. Designed to serve as both a learning resource and a reference, this book is particularly suited for those pursuing research in mathematical physics, inverse problems, or applied analysis.
Unique continuation properties for partial differential equations - introduction to the stability estimates for inverse problems / Sergio Vessella. - STAMPA. - (In corso di stampa).
Unique continuation properties for partial differential equations - introduction to the stability estimates for inverse problems
Sergio Vessella
In corso di stampa
Abstract
This book provides a comprehensive and self-contained introduction to the study of the Cauchy problem and unique continuation properties for partial differential equations. Aimed at graduate and advanced undergraduate students, it bridges foundational concepts such as Lebesgue measure theory, functional analysis, and partial differential equations with advanced topics like stability estimates in inverse problems and quantitative unique continuation. By presenting detailed proofs and illustrative examples, the text equips readers with a deeper understanding of these fundamental topics and their applications in mathematical analysis. Designed to serve as both a learning resource and a reference, this book is particularly suited for those pursuing research in mathematical physics, inverse problems, or applied analysis.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.