This dissertation is motivated by three real-world case studies where standard analytical methods proved inadequate due to the complexity and heterogeneity of the data. The limitations of classical approaches led to unreliable inferences, highlighting the need for more flexible methodologies. By employing Bayesian nonparametric models, we address application-specific challenges and develop robust inferential strategies tailored to each context. All proposed methods are supported by simulation studies.

Borrowing Information in Biometrics Applications via Bayesian Nonparametrics / Giovanni Poli. - (2025).

Borrowing Information in Biometrics Applications via Bayesian Nonparametrics

Giovanni Poli
Writing – Original Draft Preparation
2025

Abstract

This dissertation is motivated by three real-world case studies where standard analytical methods proved inadequate due to the complexity and heterogeneity of the data. The limitations of classical approaches led to unreliable inferences, highlighting the need for more flexible methodologies. By employing Bayesian nonparametric models, we address application-specific challenges and develop robust inferential strategies tailored to each context. All proposed methods are supported by simulation studies.
2025
Francesco Claudio Stingo
ITALIA
Giovanni Poli
File in questo prodotto:
File Dimensione Formato  
Poli_PhD_Thesis_DT31127_Unmarked.pdf

accesso aperto

Descrizione: Tesi formato pdf
Tipologia: Tesi di dottorato
Licenza: Open Access
Dimensione 26.37 MB
Formato Adobe PDF
26.37 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1417173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact