Die-sinking Electrical Discharge Machining (EDM) is a manufacturing process for fabricating complex geometries in challenging applications. However, its energy-intensive nature and complex parameter interactions pose challenges in balancing productivity, sustainability, and electrode wear. This study presents a comprehensive analysis of energy consumption and electrode degradation in EDM. Utilizing an advanced experimental setup with real-time energy monitoring, this study investigated the trade-off between machining parameters, energy efficiency, and electrode wear. The study employed a simple and standardized electrode geometry and varied EDM parameters, such as discharge current and pulse duration. The obtained results clearly demonstrated that optimizing EDM machining parameters, particularly discharge current, significantly influenced machining efficiency and electrode wear. Specifically, employing high-current settings of 140 A substantially reduced the total machining time from approximately 33 h (at conservative settings of 40 A) down to around 3.5 h, achieving nearly a tenfold improvement. Moreover, it also led to a reduction in specific energy consumption (SEC), decreasing from 0.81 Wh/mm3 at the low current (40 A) to 0.19 Wh/mm3 at the higher current (140 A), underscoring a definitive inverse relationship between discharge current and energy consumption. The study outcomes provide practical guidelines for enhancing the operational efficiency and sustainability of EDM in advanced manufacturing sectors.

Balancing Productivity and Sustainability in EDM: A Comprehensive Analysis of Energy Consumption and Electrode Degradation / Maurya, Sunil Kumar; Campatelli, Gianni; Veracini, Massimo; Arcioni, Massimo; Clori, Dario. - In: MACHINES. - ISSN 2075-1702. - ELETTRONICO. - 13:(2025), pp. 0-0. [10.3390/machines13060469]

Balancing Productivity and Sustainability in EDM: A Comprehensive Analysis of Energy Consumption and Electrode Degradation

Maurya, Sunil Kumar;Campatelli, Gianni
;
2025

Abstract

Die-sinking Electrical Discharge Machining (EDM) is a manufacturing process for fabricating complex geometries in challenging applications. However, its energy-intensive nature and complex parameter interactions pose challenges in balancing productivity, sustainability, and electrode wear. This study presents a comprehensive analysis of energy consumption and electrode degradation in EDM. Utilizing an advanced experimental setup with real-time energy monitoring, this study investigated the trade-off between machining parameters, energy efficiency, and electrode wear. The study employed a simple and standardized electrode geometry and varied EDM parameters, such as discharge current and pulse duration. The obtained results clearly demonstrated that optimizing EDM machining parameters, particularly discharge current, significantly influenced machining efficiency and electrode wear. Specifically, employing high-current settings of 140 A substantially reduced the total machining time from approximately 33 h (at conservative settings of 40 A) down to around 3.5 h, achieving nearly a tenfold improvement. Moreover, it also led to a reduction in specific energy consumption (SEC), decreasing from 0.81 Wh/mm3 at the low current (40 A) to 0.19 Wh/mm3 at the higher current (140 A), underscoring a definitive inverse relationship between discharge current and energy consumption. The study outcomes provide practical guidelines for enhancing the operational efficiency and sustainability of EDM in advanced manufacturing sectors.
2025
13
0
0
Goal 9: Industry, Innovation, and Infrastructure
Maurya, Sunil Kumar; Campatelli, Gianni; Veracini, Massimo; Arcioni, Massimo; Clori, Dario
File in questo prodotto:
File Dimensione Formato  
machines-13-00469.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1427777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact