Univalent mathematics and homotopy type theory provide a structural approach to formalizing mathematical concepts. Inspired by the role of displayed categories in the univalent treatment of category theory, we develop an analogous notion of displayed algebras for universal algebra. This modular and layered approach allows us to construct and reason about algebraic structures over a fixed base. Classical constructions such as cartesian products, pullbacks, semidirect products, and subalgebras naturally arise as total algebras of suitable displayed algebras. The main results are fully formalized in the UniMath library.
Displayed Universal Algebra in UniMath: Basic Definitions and Results / Gianluca Amato; Matteo Calosci; Marco Maggesi; Cosimo Perini Brogi. - ELETTRONICO. - 4039:(2025), pp. 127-133. ( 26th Italian Conference on Theoretical Computer Science, ICTCS 2025 Campus of Pescara, at the Department of Economic Studies of the University of Chieti-Pescara, ita 2025).
Displayed Universal Algebra in UniMath: Basic Definitions and Results
Matteo Calosci;Marco Maggesi;Cosimo Perini Brogi
2025
Abstract
Univalent mathematics and homotopy type theory provide a structural approach to formalizing mathematical concepts. Inspired by the role of displayed categories in the univalent treatment of category theory, we develop an analogous notion of displayed algebras for universal algebra. This modular and layered approach allows us to construct and reason about algebraic structures over a fixed base. Classical constructions such as cartesian products, pullbacks, semidirect products, and subalgebras naturally arise as total algebras of suitable displayed algebras. The main results are fully formalized in the UniMath library.| File | Dimensione | Formato | |
|---|---|---|---|
|
Amato, Calosci, Maggesi, Perini Brogi (2025) Displayed Universal Algebra.pdf
accesso aperto
Descrizione: Copia del file pubblicamente disponibile dal sito dell'editore
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
966.65 kB
Formato
Adobe PDF
|
966.65 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



