Let f be a homogeneous polynomial of even degree d. We study the decompositions f=∑i=1rfi2 where deg⁡fi=d/2. The minimal number of summands r is called the 2-rank of f, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into O(r)-orbits, the problem becomes counting how many different O(r)-orbits of decomposition exist. We say that f is O(r)-identifiable if there is a unique O(r)-orbit. We give sufficient conditions for generic and specific O(r)-identifiability. Moreover, we show the generic O(r)-identifiability of ternary forms.

Generalized identifiability of sums of squares / Ottaviani, Giorgio; Teixeira Turatti, Ettore. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - STAMPA. - 661:(2025), pp. 641-656. [10.1016/j.jalgebra.2024.07.052]

Generalized identifiability of sums of squares

Ottaviani, Giorgio;Teixeira Turatti, Ettore
2025

Abstract

Let f be a homogeneous polynomial of even degree d. We study the decompositions f=∑i=1rfi2 where deg⁡fi=d/2. The minimal number of summands r is called the 2-rank of f, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into O(r)-orbits, the problem becomes counting how many different O(r)-orbits of decomposition exist. We say that f is O(r)-identifiable if there is a unique O(r)-orbit. We give sufficient conditions for generic and specific O(r)-identifiability. Moreover, we show the generic O(r)-identifiability of ternary forms.
2025
661
641
656
Ottaviani, Giorgio; Teixeira Turatti, Ettore
File in questo prodotto:
File Dimensione Formato  
2402.05189v2.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 255.49 kB
Formato Adobe PDF
255.49 kB Adobe PDF
1-s2.0-S0021869324004496-main.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 396.39 kB
Formato Adobe PDF
396.39 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1441633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact