A characterization of the total variation TV of the Jacobian determinant detDu is obtained for some classes of functions u in R^n outside the traditional regularity space W^(1,n). In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity. Relations between TV and the distributional determinant DetDu are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals.

Topological Degree, Jacobian Determinants and Relaxation / I. FONSECA.; N. FUSCO; P. MARCELLINI. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. A. - ISSN 0392-4033. - STAMPA. - 8:(2005), pp. 187-250.

Topological Degree, Jacobian Determinants and Relaxation

MARCELLINI, PAOLO
2005

Abstract

A characterization of the total variation TV of the Jacobian determinant detDu is obtained for some classes of functions u in R^n outside the traditional regularity space W^(1,n). In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity. Relations between TV and the distributional determinant DetDu are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals.
2005
8
187
250
I. FONSECA.; N. FUSCO; P. MARCELLINI
File in questo prodotto:
File Dimensione Formato  
2005_Fonseca_Fusco_Marcellini.pdf

accesso aperto

Tipologia: Altro
Licenza: Open Access
Dimensione 388.74 kB
Formato Adobe PDF
388.74 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/215742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact