We give several new characterizations of Riordan Arrays, the most important of which is: if {d(n,k)}(n,k epsilon N) is a lower triangular array whose generic element d(n,k) linearly depends on the elements in a well-defined though large area of the array, then {d(n,k)}(n,k epsilon N) is Riordan. We also provide some applications of these characterizations to the lattice path theory.
On some alternative characterization of Riordan arrays / MERLINI D.; ROGERS D.; R. SPRUGNOLI; VERRI M.C.. - In: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES. - ISSN 0008-414X. - STAMPA. - 49 (2):(1997), pp. 301-320. [10.4153/CJM-1997-015-x]
On some alternative characterization of Riordan arrays
MERLINI, DONATELLA;SPRUGNOLI, RENZO;VERRI, MARIA CECILIA
1997
Abstract
We give several new characterizations of Riordan Arrays, the most important of which is: if {d(n,k)}(n,k epsilon N) is a lower triangular array whose generic element d(n,k) linearly depends on the elements in a well-defined though large area of the array, then {d(n,k)}(n,k epsilon N) is Riordan. We also provide some applications of these characterizations to the lattice path theory.File | Dimensione | Formato | |
---|---|---|---|
r3.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
132.38 kB
Formato
Adobe PDF
|
132.38 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.