The paper investigates Hopf bifurcations in a class of simple nonlinear systems, i.e., third order affine control systems described in terms of “quadratic plus cubic” normal forms and subject to linear state feedback control laws. By employing Harmonic Balance (HB) tools, the set of system parameters corresponding to supercritical and subcritical bifurcations is analytically determined. Also, a second order harmonic approximation of the bifurcated periodic solution is provided. Such analytical results can be exploited as starting points to investigate complex behaviours of the considered class of simple nonlinear systems.

Hopf bifurcations in normal forms of third order nonlinear affine control systems / Innocenti, Giacomo; Tesi, Alberto; Genesio, Roberto. - STAMPA. - 41, Part 1:(2008), pp. 15119-15124. (Intervento presentato al convegno 17th IFAC World Congress tenutosi a SEOUL, KOREA nel JULY 6-11, 2008) [10.3182/20080706-5-KR-1001.02557].

Hopf bifurcations in normal forms of third order nonlinear affine control systems

INNOCENTI, GIACOMO
;
TESI, ALBERTO;GENESIO, ROBERTO
2008

Abstract

The paper investigates Hopf bifurcations in a class of simple nonlinear systems, i.e., third order affine control systems described in terms of “quadratic plus cubic” normal forms and subject to linear state feedback control laws. By employing Harmonic Balance (HB) tools, the set of system parameters corresponding to supercritical and subcritical bifurcations is analytically determined. Also, a second order harmonic approximation of the bifurcated periodic solution is provided. Such analytical results can be exploited as starting points to investigate complex behaviours of the considered class of simple nonlinear systems.
2008
Proceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
17th IFAC World Congress
SEOUL, KOREA
JULY 6-11, 2008
Innocenti, Giacomo; Tesi, Alberto; Genesio, Roberto
File in questo prodotto:
File Dimensione Formato  
IFAC_2008b.pdf

Accesso chiuso

Descrizione: Pre-print
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 306.02 kB
Formato Adobe PDF
306.02 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/260321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact