We prove a global bifurcation result for an abstract equation of the type $Lx + lambda h(lambda,x) = 0$, where $L: E o F$ is a linear Fredholm operator of index zero between Banach spaces and $h: mathbb R imes E o F$ is a $C^1$ (not necessarily compact) map. We assume that $L$ is not invertible and, under suitable conditions, we prove the existence of an unbounded connected set $Sigma$ of nontrivial solutions of the above equation (i.e. solutions $(lambda,x)$ with $lambda eq 0$) such that the closure of $Sigma$ contains a trivial solution $(0,ar x)$. This result extends previous ones in which the compactness of $h$ was required. The proof is based on a degree theory for Fredholm maps of index zero developed by the first two authors.

Atypical bifurcation without compactness / P. Benevieri; M. Furi; M. Martelli; M. Pera. - In: ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN. - ISSN 0232-2064. - STAMPA. - 24:(2005), pp. 137-147. [10.4171/ZAA/1233]

Atypical bifurcation without compactness

BENEVIERI, PIERLUIGI;FURI, MASSIMO;PERA, MARIA PATRIZIA
2005

Abstract

We prove a global bifurcation result for an abstract equation of the type $Lx + lambda h(lambda,x) = 0$, where $L: E o F$ is a linear Fredholm operator of index zero between Banach spaces and $h: mathbb R imes E o F$ is a $C^1$ (not necessarily compact) map. We assume that $L$ is not invertible and, under suitable conditions, we prove the existence of an unbounded connected set $Sigma$ of nontrivial solutions of the above equation (i.e. solutions $(lambda,x)$ with $lambda eq 0$) such that the closure of $Sigma$ contains a trivial solution $(0,ar x)$. This result extends previous ones in which the compactness of $h$ was required. The proof is based on a degree theory for Fredholm maps of index zero developed by the first two authors.
2005
24
137
147
Goal 17: Partnerships for the goals
P. Benevieri; M. Furi; M. Martelli; M. Pera
File in questo prodotto:
File Dimensione Formato  
Atypical_bifurcation.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 246.57 kB
Formato Adobe PDF
246.57 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/307019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact