Image segmentation methods based only on grey level information are not suitable for pictures in which regions exhibit almost the same average grey level and differ only for local variations or texture. By extending these methods to textural features, better results are expected. Among textural features, those extracted from co-occurrence matrices are quite effective. A fast algorithm for the calculation of these parameters for windows centred on each pixel of the image is presented.

Fast calculation of co-occurrence matrix parameters for image segmentation / ARGENTI F.; L. ALPARONE; BENELLI G.. - In: ELECTRONICS LETTERS. - ISSN 0013-5194. - STAMPA. - 26:(1990), pp. 23-24. [10.1049/el:19900015]

Fast calculation of co-occurrence matrix parameters for image segmentation

ARGENTI, FABRIZIO;ALPARONE, LUCIANO;
1990

Abstract

Image segmentation methods based only on grey level information are not suitable for pictures in which regions exhibit almost the same average grey level and differ only for local variations or texture. By extending these methods to textural features, better results are expected. Among textural features, those extracted from co-occurrence matrices are quite effective. A fast algorithm for the calculation of these parameters for windows centred on each pixel of the image is presented.
1990
26
23
24
ARGENTI F.; L. ALPARONE; BENELLI G.
File in questo prodotto:
File Dimensione Formato  
1990_IEE_ELett_cooc.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 149.81 kB
Formato Adobe PDF
149.81 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/310611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact