We define the Stirling numbers for complex values and obtain extensions of certain identities involving these numbers. We also show that the generalization is a natural one for proving unimodality and monotonicity results for these numbers. The definition is based on the Cauchy integral formula and can be used for many other combinatorial numbers

Stirling numbers for complex arguments / B. RICHMOND; D. MERLINI. - In: SIAM JOURNAL ON DISCRETE MATHEMATICS. - ISSN 0895-4801. - STAMPA. - 10:(1997), pp. 73-82. [10.1137/S0895480195284329]

Stirling numbers for complex arguments

MERLINI, DONATELLA
1997

Abstract

We define the Stirling numbers for complex values and obtain extensions of certain identities involving these numbers. We also show that the generalization is a natural one for proving unimodality and monotonicity results for these numbers. The definition is based on the Cauchy integral formula and can be used for many other combinatorial numbers
1997
10
73
82
B. RICHMOND; D. MERLINI
File in questo prodotto:
File Dimensione Formato  
r2.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 223.73 kB
Formato Adobe PDF
223.73 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/311579
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact