We use some combinatorial methods to study underdiagonal paths (on the Z(2) lattice) made up of unrestricted steps, i.e., ordered pairs of non-negative integers. We introduce an algorithm which automatically produces some counting generating functions for a large class of these paths. We also give an example of how we use these functions to obtain some specific information on the number d(n,k) of paths from the origin to a generic point (n, n - k).
Underdiagonal lattice paths with unrestricted steps / MERLINI D.; ROGERS D.; R. SPRUGNOLI; VERRI M.C.. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - STAMPA. - 91:(1999), pp. 197-213. [10.1016/S0166-218X(98)00126-7]
Underdiagonal lattice paths with unrestricted steps
MERLINI, DONATELLA;SPRUGNOLI, RENZO;VERRI, MARIA CECILIA
1999
Abstract
We use some combinatorial methods to study underdiagonal paths (on the Z(2) lattice) made up of unrestricted steps, i.e., ordered pairs of non-negative integers. We introduce an algorithm which automatically produces some counting generating functions for a large class of these paths. We also give an example of how we use these functions to obtain some specific information on the number d(n,k) of paths from the origin to a generic point (n, n - k).File | Dimensione | Formato | |
---|---|---|---|
r6.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.