We use some combinatorial methods to study underdiagonal paths (on the Z(2) lattice) made up of unrestricted steps, i.e., ordered pairs of non-negative integers. We introduce an algorithm which automatically produces some counting generating functions for a large class of these paths. We also give an example of how we use these functions to obtain some specific information on the number d(n,k) of paths from the origin to a generic point (n, n - k).

Underdiagonal lattice paths with unrestricted steps / MERLINI D.; ROGERS D.; R. SPRUGNOLI; VERRI M.C.. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - STAMPA. - 91:(1999), pp. 197-213. [10.1016/S0166-218X(98)00126-7]

Underdiagonal lattice paths with unrestricted steps

MERLINI, DONATELLA;SPRUGNOLI, RENZO;VERRI, MARIA CECILIA
1999

Abstract

We use some combinatorial methods to study underdiagonal paths (on the Z(2) lattice) made up of unrestricted steps, i.e., ordered pairs of non-negative integers. We introduce an algorithm which automatically produces some counting generating functions for a large class of these paths. We also give an example of how we use these functions to obtain some specific information on the number d(n,k) of paths from the origin to a generic point (n, n - k).
1999
91
197
213
MERLINI D.; ROGERS D.; R. SPRUGNOLI; VERRI M.C.
File in questo prodotto:
File Dimensione Formato  
r6.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/312498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact