In this paper, a novel despeckling algorithm based on undecimated wavelet decomposition and maximum a posteriori estimation is proposed. Such a method represents an improvement with respect to the filter presented by the authors, and it is based on the same conjecture that the probability density functions (pdfs) of the wavelet coefficients follow a generalized Gaussian (GG) distribution. However, the approach introduced here presents two major novelties: 1) theoretically exact expressions for the estimation of the GG parameters are derived: such expressions do not require further assumptions other than the multiplicative model with uncorrelated speckle, and hold also in the case of a strongly correlated reflectivity; 2) a model for the classification of the wavelet coefficients according to their texture energy is introduced. This model allows us to classify the wavelet coefficients into classes having different degrees of heterogeneity, so that ad hoc estimation approaches can be devised for the different sets of coefficients. Three different implementations, characterized by different approaches for incorporating into the filtering procedure the information deriving from the segmentation of the wavelet coefficients, are proposed. Experimental results, carried out on both artificially speckled images and true synthetic aperture radar images, demonstrate that the proposed filtering approach outperforms the previous filters, irrespective of the features of the underlying reflectivity.
Segmentation-Based MAP Despeckling of SAR Images in the Undecimated Wavelet Domain / T. Bianchi; F. Argenti; L. Alparone. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 46:(2008), pp. 2728-2742. [10.1109/TGRS.2008.920018]
Segmentation-Based MAP Despeckling of SAR Images in the Undecimated Wavelet Domain
BIANCHI, TIZIANO;ARGENTI, FABRIZIO;ALPARONE, LUCIANO
2008
Abstract
In this paper, a novel despeckling algorithm based on undecimated wavelet decomposition and maximum a posteriori estimation is proposed. Such a method represents an improvement with respect to the filter presented by the authors, and it is based on the same conjecture that the probability density functions (pdfs) of the wavelet coefficients follow a generalized Gaussian (GG) distribution. However, the approach introduced here presents two major novelties: 1) theoretically exact expressions for the estimation of the GG parameters are derived: such expressions do not require further assumptions other than the multiplicative model with uncorrelated speckle, and hold also in the case of a strongly correlated reflectivity; 2) a model for the classification of the wavelet coefficients according to their texture energy is introduced. This model allows us to classify the wavelet coefficients into classes having different degrees of heterogeneity, so that ad hoc estimation approaches can be devised for the different sets of coefficients. Three different implementations, characterized by different approaches for incorporating into the filtering procedure the information deriving from the segmentation of the wavelet coefficients, are proposed. Experimental results, carried out on both artificially speckled images and true synthetic aperture radar images, demonstrate that the proposed filtering approach outperforms the previous filters, irrespective of the features of the underlying reflectivity.File | Dimensione | Formato | |
---|---|---|---|
TGRS-sept2008.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.99 MB
Formato
Adobe PDF
|
1.99 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.