We prove Lipschitz continuity for local minimizers of integral functionals of the Calulus of variations in the vectorial case, where the energy density depends explicity on the space variables and has general growth with respect to the gradient. One of the models is F(u) =integral(Omega) a(chi)[h(\Du\)](p(z))dchi with h a convex function with general growth (also exponential behaviour is allowed).
Everywhere regularity for vectorial functionals with general growth / E. Mascolo; A. Migliorini. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 9:(2003), pp. 399-418. [10.1051/cocv:2003019]
Everywhere regularity for vectorial functionals with general growth
MASCOLO, ELVIRA;
2003
Abstract
We prove Lipschitz continuity for local minimizers of integral functionals of the Calulus of variations in the vectorial case, where the energy density depends explicity on the space variables and has general growth with respect to the gradient. One of the models is F(u) =integral(Omega) a(chi)[h(\Du\)](p(z))dchi with h a convex function with general growth (also exponential behaviour is allowed).File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Mascolo-Migliorini.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
375.41 kB
Formato
Adobe PDF
|
375.41 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



