We prove that a maximal totally complex 2n-dimensional submanifold N of the quaternionic projective space HP(n) (n ≥ 2) is a parallel submanifold, provided that one of the following conditions is satisfied: (1) N is the orbit of a compact Lie group of isometries; (2) the restricted normal holonomy is a proper subgroup of U(n).

Maximal totally complex submanifolds of HP^n : homogeneity and normal holonomy / F. PODESTA'; L. BEDULLI; A. GORI. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - STAMPA. - 41:(2009), pp. 1029-1040. [10.1112/blms/bdp081]

Maximal totally complex submanifolds of HP^n : homogeneity and normal holonomy

PODESTA', FABIO;
2009

Abstract

We prove that a maximal totally complex 2n-dimensional submanifold N of the quaternionic projective space HP(n) (n ≥ 2) is a parallel submanifold, provided that one of the following conditions is satisfied: (1) N is the orbit of a compact Lie group of isometries; (2) the restricted normal holonomy is a proper subgroup of U(n).
2009
41
1029
1040
F. PODESTA'; L. BEDULLI; A. GORI
File in questo prodotto:
File Dimensione Formato  
BullLondon.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 223.24 kB
Formato Adobe PDF
223.24 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/358792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact