A Bayesian approach to causal inference in the presence of noncom- pliance to assigned randomized treatment is considered. It exploits multivariate outcomes for improving estimation of weakly identified models. We maintain the monotonicity of compliance assumption, while relaxing the usually invoked exclusion restriction assumption for never-takers. Using artificial data sets, we analyze the properties of the posterior distribution of causal estimands to evaluate the potential gains of jointly modelling more than one outcome. The approach can be used to assess robustness with respect to deviations from structural identifying assumptions. It can also be extended to the analysis of observational studies with instrumental variables where exclusion restriction assumptions are usually questionable.

Exploiting multivariate outcomes in Bayesian inference for causal effects with noncompliance / A.Mattei; F.Mealli; B.Pacini. - ELETTRONICO. - (2010), pp. 1-8. (Intervento presentato al convegno XLV Riunione Scientifica della Società Italiana di Statistica tenutosi a Padova nel 16-18 Giugno 2010).

Exploiting multivariate outcomes in Bayesian inference for causal effects with noncompliance

MATTEI, ALESSANDRA;MEALLI, FABRIZIA;PACINI, BARBARA
2010

Abstract

A Bayesian approach to causal inference in the presence of noncom- pliance to assigned randomized treatment is considered. It exploits multivariate outcomes for improving estimation of weakly identified models. We maintain the monotonicity of compliance assumption, while relaxing the usually invoked exclusion restriction assumption for never-takers. Using artificial data sets, we analyze the properties of the posterior distribution of causal estimands to evaluate the potential gains of jointly modelling more than one outcome. The approach can be used to assess robustness with respect to deviations from structural identifying assumptions. It can also be extended to the analysis of observational studies with instrumental variables where exclusion restriction assumptions are usually questionable.
2010
Proceedings of the XLV Scientific Meeting of the Italian Statistical Society.
XLV Riunione Scientifica della Società Italiana di Statistica
Padova
16-18 Giugno 2010
A.Mattei; F.Mealli; B.Pacini
File in questo prodotto:
File Dimensione Formato  
609-1464-1-DR.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 113.91 kB
Formato Adobe PDF
113.91 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/599201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact