We study some statistics related to Dyck paths, whose explicit formulas are obtained by means of the Lagrange Inversion Formula. There are five such statistics and one of them is well-known and owed to Narayana. The most interesting of the other 4 statistics is related to Euler's trinomial coefficients: we perform a study of that statistic proving a number of its properties.

Lagrange statistics on Dyck paths / D. Merlini; R. Sprugnoli; M. C. Verri. - STAMPA. - (1998), pp. 1-14. (Intervento presentato al convegno Lattice Paths Combinatorics and Applications '98 tenutosi a Wien, Austria nel July 8-10, 1998).

Lagrange statistics on Dyck paths

MERLINI, DONATELLA;SPRUGNOLI, RENZO;VERRI, MARIA CECILIA
1998

Abstract

We study some statistics related to Dyck paths, whose explicit formulas are obtained by means of the Lagrange Inversion Formula. There are five such statistics and one of them is well-known and owed to Narayana. The most interesting of the other 4 statistics is related to Euler's trinomial coefficients: we perform a study of that statistic proving a number of its properties.
1998
Proceedings of Lattice Paths Combinatorics and Applications '98
Lattice Paths Combinatorics and Applications '98
Wien, Austria
July 8-10, 1998
D. Merlini; R. Sprugnoli; M. C. Verri
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/647383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact