Streambank erosion processes contribute significantly to the sediment yielded from a river system and represent an important issue in the contexts of soil degradation and river management. Bank retreat is controlled by a complex interaction of hydrologic, geotechnical, and hydraulic processes. The capability of modelling these different components allows for a full reconstruction and comprehension of the causes and rates of bank erosion. River bank retreat during a single flow event has been modelled by combining simulation of fluvial erosion, seepage, and mass failures. The study site, along the Sieve River (Central Italy), has been subject to extensive researches, including monitoring of pore water pressures for a period of 4 years. The simulation reconstructs fairly faithfully the observed changes, and is used to: a) test the potentiality and discuss advantages and limitations of such type of methodology for modelling bank retreat; c) quantify the contribution and mutual role of the different processes determining bank retreat. The hydrograph of the event is divided in a series of time steps. Modelling of the riverbank retreat includes for each step the following components: a) fluvial erosion and consequent changes in bank geometry; b) finite element seepage analysis; c) stability analysis by limit equilibrium method. Direct fluvial shear erosion is computed using empirically derived relationships expressing lateral erosion rate as a function of the excess of shear stress to the critical entrainment value for the different materials along the bank profile. Lateral erosion rate has been calibrated on the basis of the total bank retreat measured by digital terrestrial photogrammetry. Finite element seepage analysis is then conducted to reconstruct the saturated and unsaturated flow within the bank and the pore water pressure distribution for each time step. The safety factor for mass failures is then computed, using the pore water pressure distribution obtained by the seepage analysis, and the geometry of the upper bank is modified in case of failure
Modelling of river bank retreat by combining fluvial erosion, seepage and mass failure / Dapporto S.; Rinaldi M.. - In: GEOPHYSICAL RESEARCH ABSTRACTS. - ISSN 1607-7962. - ELETTRONICO. - 5:(2003), pp. ---.
Modelling of river bank retreat by combining fluvial erosion, seepage and mass failure
DAPPORTO, STEFANO;RINALDI, MASSIMO
2003
Abstract
Streambank erosion processes contribute significantly to the sediment yielded from a river system and represent an important issue in the contexts of soil degradation and river management. Bank retreat is controlled by a complex interaction of hydrologic, geotechnical, and hydraulic processes. The capability of modelling these different components allows for a full reconstruction and comprehension of the causes and rates of bank erosion. River bank retreat during a single flow event has been modelled by combining simulation of fluvial erosion, seepage, and mass failures. The study site, along the Sieve River (Central Italy), has been subject to extensive researches, including monitoring of pore water pressures for a period of 4 years. The simulation reconstructs fairly faithfully the observed changes, and is used to: a) test the potentiality and discuss advantages and limitations of such type of methodology for modelling bank retreat; c) quantify the contribution and mutual role of the different processes determining bank retreat. The hydrograph of the event is divided in a series of time steps. Modelling of the riverbank retreat includes for each step the following components: a) fluvial erosion and consequent changes in bank geometry; b) finite element seepage analysis; c) stability analysis by limit equilibrium method. Direct fluvial shear erosion is computed using empirically derived relationships expressing lateral erosion rate as a function of the excess of shear stress to the critical entrainment value for the different materials along the bank profile. Lateral erosion rate has been calibrated on the basis of the total bank retreat measured by digital terrestrial photogrammetry. Finite element seepage analysis is then conducted to reconstruct the saturated and unsaturated flow within the bank and the pore water pressure distribution for each time step. The safety factor for mass failures is then computed, using the pore water pressure distribution obtained by the seepage analysis, and the geometry of the upper bank is modified in case of failureI documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.