Glomerular expression of chemotactic protein-1/chemokine (C-C motif) ligand-2 (MCP-1/CCL2) correlates with the degree of renal damage, suggesting a role of this chemokine in the pathogenesis of renal diseases. Bindarit is an original indazolic derivative able to inhibit MCPs synthesis and to significantly decrease MCP-1/CCL2 urinary excretion in patients with Lupus Nephritis, in correlation with reduction in albuminuria. Aim of the present work was to elucidate the effect of MCP-1/CCL2 synthesis inhibition on in vitro models of mesangial cell dysfunction. ET1 (10nM) and AngII (10nM) significantly stimulated MCP-1/CCL2 release by human renal mesangial cells (HRMCs) after 3-12h stimulation. Bindarit (10-300μM) significantly inhibited MCP-1/CCL2 release in response to both stimuli within 12h. Bindarit also inhibited mRNA MCP-1/CCL2 expression, confirming an effect of the drug at transcriptional level. Bindarit significantly and concentration-dependently inhibited HRMC proliferation, measured as either cell duplication or total DNA/well, and impaired mRNA collagen IV expression, collagen deposition and fibronectin expression induced by AngII and ET1. Exposure of HRMCs to bindarit also impaired MMP2 activation in response to both stimuli, measured by means of gelatin zymography. These data confirm the important role of MCP-1/CCL2 synthesis in mesangial cell dysfunction and support the potential of therapeutic intervention targeting this chemokine in kidney disease.

The monocyte chemotactic protein synthesis inhibitor bindarit prevents mesangial cell proliferation and extracellular matrix remodeling / S. Paccosi; C. Musilli; G. Mangano; A. Guglielmotti; A. Parenti. - In: PHARMACOLOGICAL RESEARCH. - ISSN 1043-6618. - STAMPA. - 66:(2012), pp. 526-535. [10.1016/j.phrs.2012.09.006]

The monocyte chemotactic protein synthesis inhibitor bindarit prevents mesangial cell proliferation and extracellular matrix remodeling

PACCOSI, SARA;MUSILLI, CLAUDIA;PARENTI, ASTRID
2012

Abstract

Glomerular expression of chemotactic protein-1/chemokine (C-C motif) ligand-2 (MCP-1/CCL2) correlates with the degree of renal damage, suggesting a role of this chemokine in the pathogenesis of renal diseases. Bindarit is an original indazolic derivative able to inhibit MCPs synthesis and to significantly decrease MCP-1/CCL2 urinary excretion in patients with Lupus Nephritis, in correlation with reduction in albuminuria. Aim of the present work was to elucidate the effect of MCP-1/CCL2 synthesis inhibition on in vitro models of mesangial cell dysfunction. ET1 (10nM) and AngII (10nM) significantly stimulated MCP-1/CCL2 release by human renal mesangial cells (HRMCs) after 3-12h stimulation. Bindarit (10-300μM) significantly inhibited MCP-1/CCL2 release in response to both stimuli within 12h. Bindarit also inhibited mRNA MCP-1/CCL2 expression, confirming an effect of the drug at transcriptional level. Bindarit significantly and concentration-dependently inhibited HRMC proliferation, measured as either cell duplication or total DNA/well, and impaired mRNA collagen IV expression, collagen deposition and fibronectin expression induced by AngII and ET1. Exposure of HRMCs to bindarit also impaired MMP2 activation in response to both stimuli, measured by means of gelatin zymography. These data confirm the important role of MCP-1/CCL2 synthesis in mesangial cell dysfunction and support the potential of therapeutic intervention targeting this chemokine in kidney disease.
2012
66
526
535
S. Paccosi; C. Musilli; G. Mangano; A. Guglielmotti; A. Parenti
File in questo prodotto:
File Dimensione Formato  
PharmacolRes_2012.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/703359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact