We report the effects of exogenous and endogenous carbon monoxide (CO) on the immunological activation of human basophils. Hemin (1-100 microM), a heme oxygenase substrate analogue, significantly increased the formation of bilirubin from partially purified human basophils, thus indicating that these cells express heme oxygenase. This effect was reversed by preincubating the cells for 30 min with Zn-protoporphyrin IX (100 microM), a heme oxygenase inhibitor. Hemin (100 microM) also decreased immunoglobulin G anti-Fcepsilon (anti-IgE)-induced activation of basophils, measured by the expression of a membrane granule-associated protein, identified as cluster differentiation protein 63 (CD63), and by histamine release. These effects were reversed by Zn-protoporphyrin IX (100 microM), by oxyhemoglobin (HbO(2)), a CO scavenger (100 microM), and by 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ), an inhibitor of the soluble guanylyl cyclase (100 microM). Exposure of basophils to exogenous CO (10 microM for 30 min) also decreased their activation, while nitrogen (N(2)) was ineffective. HbO(2) and ODQ reversed the inhibition, reversing both membrane protein CD63 expression and histamine release to basal values. Both hemin and exogenous CO significantly raised cGMP levels in basophils and blunted the rise of calcium levels caused by immunological activation. This study suggests that CO increases cGMP formation, which in turn induces a fall in intracellular Ca(2+) concentration, thereby resulting in the inhibition of human basophil activation.

Carbon monoxide modulates the response of human basophils to FcepsilonRI stimulation through the heme oxygenase pathway / Vannacci A;Baronti R;Zagli G;Marzocca C;Pierpaoli S;Bani D;Passani MB;Mannaioni PF;Masini E. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - STAMPA. - 465:(2003), pp. 289-297.

Carbon monoxide modulates the response of human basophils to FcepsilonRI stimulation through the heme oxygenase pathway.

VANNACCI, ALFREDO;ZAGLI, GIOVANNI;BANI, DANIELE;PASSANI, MARIA BEATRICE;MANNAIONI, PIER FRANCESCO;MASINI, EMANUELA
2003

Abstract

We report the effects of exogenous and endogenous carbon monoxide (CO) on the immunological activation of human basophils. Hemin (1-100 microM), a heme oxygenase substrate analogue, significantly increased the formation of bilirubin from partially purified human basophils, thus indicating that these cells express heme oxygenase. This effect was reversed by preincubating the cells for 30 min with Zn-protoporphyrin IX (100 microM), a heme oxygenase inhibitor. Hemin (100 microM) also decreased immunoglobulin G anti-Fcepsilon (anti-IgE)-induced activation of basophils, measured by the expression of a membrane granule-associated protein, identified as cluster differentiation protein 63 (CD63), and by histamine release. These effects were reversed by Zn-protoporphyrin IX (100 microM), by oxyhemoglobin (HbO(2)), a CO scavenger (100 microM), and by 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ), an inhibitor of the soluble guanylyl cyclase (100 microM). Exposure of basophils to exogenous CO (10 microM for 30 min) also decreased their activation, while nitrogen (N(2)) was ineffective. HbO(2) and ODQ reversed the inhibition, reversing both membrane protein CD63 expression and histamine release to basal values. Both hemin and exogenous CO significantly raised cGMP levels in basophils and blunted the rise of calcium levels caused by immunological activation. This study suggests that CO increases cGMP formation, which in turn induces a fall in intracellular Ca(2+) concentration, thereby resulting in the inhibition of human basophil activation.
2003
465
289
297
Vannacci A;Baronti R;Zagli G;Marzocca C;Pierpaoli S;Bani D;Passani MB;Mannaioni PF;Masini E
File in questo prodotto:
File Dimensione Formato  
Vanncci EuJPh 2003.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 606.05 kB
Formato Adobe PDF
606.05 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/770979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact