Aryl/alkyl-sulfonyl-, aryl/alkylcarboxyl- and aryl(sulfonyl)carbamyl/thiocarbamyl-derivatives of dibenzo-1,4-dioxine-2-acetyloxime were prepared by reaction of the title compound with sulfonyl halides, sulfonic acid anhydrides, acyl chlorides/carboxylic acids, arylsulfonyl isocyanates, aryl/acyl isocyanates or isothiocyanates. Several of the newly synthesized compounds showed effective in vitro antifungal activity against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole (with minimum inhibitory concentrations in the range of 1.2-4 microg/mL) against the two Aspergillus strains, but possessing a lower activity as compared to ketoconazole against C. albicans. Of the three investigated strains, best activity was detected against A. flavus. The mechanism of action of these compounds probably involves inhibition of ergosterol biosynthesis by interaction with lanosterol-14-alpha-demethylase (CYP51A1), since reduced amounts of ergosterol were found by means of HPLC, in cultures of the sensitive strain A. flavus treated with some of these inhibitors. Thus, the compounds reported here might possess a similar mechanism of action at molecular level with that of the widely used azole antifungals.

The antifungal activity of sulfonylated/carboxylated derivatives of dibenzo-1,4-dioxine-2-acetyloxime may be due to inhibition of lanosterol-14alpha-demethylase / A. Mastrolorenzo;A. Scozzafava;C. T. Supuran. - In: JOURNAL OF ENZYME INHIBITION. - ISSN 8755-5093. - STAMPA. - 15:(2000), pp. 557-569.

The antifungal activity of sulfonylated/carboxylated derivatives of dibenzo-1,4-dioxine-2-acetyloxime may be due to inhibition of lanosterol-14alpha-demethylase.

SCOZZAFAVA, ANDREA;SUPURAN, CLAUDIU TRANDAFIR
2000

Abstract

Aryl/alkyl-sulfonyl-, aryl/alkylcarboxyl- and aryl(sulfonyl)carbamyl/thiocarbamyl-derivatives of dibenzo-1,4-dioxine-2-acetyloxime were prepared by reaction of the title compound with sulfonyl halides, sulfonic acid anhydrides, acyl chlorides/carboxylic acids, arylsulfonyl isocyanates, aryl/acyl isocyanates or isothiocyanates. Several of the newly synthesized compounds showed effective in vitro antifungal activity against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole (with minimum inhibitory concentrations in the range of 1.2-4 microg/mL) against the two Aspergillus strains, but possessing a lower activity as compared to ketoconazole against C. albicans. Of the three investigated strains, best activity was detected against A. flavus. The mechanism of action of these compounds probably involves inhibition of ergosterol biosynthesis by interaction with lanosterol-14-alpha-demethylase (CYP51A1), since reduced amounts of ergosterol were found by means of HPLC, in cultures of the sensitive strain A. flavus treated with some of these inhibitors. Thus, the compounds reported here might possess a similar mechanism of action at molecular level with that of the widely used azole antifungals.
2000
15
557
569
A. Mastrolorenzo;A. Scozzafava;C. T. Supuran
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/775765
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact