The inhibition of the beta-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with carboxylates such as the C1-C5 aliphatic carboxylates, oxalate, malonate, maleate, malate, pyruvate, lactate, citrate and some benzoates has been investigated. The best Can2 inhibitors were acetate and maleate (K(I)s of 7.3-8.7 microM), whereas formate, acetate, valerate, oxalate, maleate, citrate and 2,3,5,6-tetrafluorobenzoate showed less effective inhibition, with K(I)s in the range of 42.8-88.6 microM. Propionate, butyrate, malonate, L-malate, pyruvate, L-lactate and benzoate, were weak Can2 inhibitors, with inhibition constants in the range of 225-1267 microM. Nce103 was more susceptible to inhibition with carboxylates compared to Can2, with the best inhibitors (maleate, benzoate, butyrate and malonate) showing K(I)s in the range of 8.6-26.9 microM. L-Malate and pyruvate together with valerate were the less efficient Nce103 inhibitors (K(I)s of 87.7-94.0 microM), while the remaining carboxylates showed a compact behavior of efficient inhibitors (K(I)s in the range of 35.1-61.6 microM). Notably the inhibition profiles of the two fungal beta-CAs was very different from that of the ubiquitous host enzyme hCA II (belonging to the alpha-CA family), with maleate showing selectivity ratios of 113.6 and 115 for Can2 and Nce103, respectively, over hCA II inhibition. Therefore, maleate is a promising starting lead molecule for the development of better, low nanomolar, selective beta-CA inhibitors.

Carbonic anhydrase inhibitors. Inhibition of the beta-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with aliphatic and aromatic carboxylates / A. Innocenti;R. A. Hall;C. Schlicker;F. A. Mühlschlegel;C. T. Supuran. - In: BIOORGANIC & MEDICINAL CHEMISTRY. - ISSN 0968-0896. - STAMPA. - 17:(2009), pp. 2654-2657. [10.1016/j.bmc.2009.02.058]

Carbonic anhydrase inhibitors. Inhibition of the beta-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with aliphatic and aromatic carboxylates.

SUPURAN, CLAUDIU TRANDAFIR
2009

Abstract

The inhibition of the beta-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with carboxylates such as the C1-C5 aliphatic carboxylates, oxalate, malonate, maleate, malate, pyruvate, lactate, citrate and some benzoates has been investigated. The best Can2 inhibitors were acetate and maleate (K(I)s of 7.3-8.7 microM), whereas formate, acetate, valerate, oxalate, maleate, citrate and 2,3,5,6-tetrafluorobenzoate showed less effective inhibition, with K(I)s in the range of 42.8-88.6 microM. Propionate, butyrate, malonate, L-malate, pyruvate, L-lactate and benzoate, were weak Can2 inhibitors, with inhibition constants in the range of 225-1267 microM. Nce103 was more susceptible to inhibition with carboxylates compared to Can2, with the best inhibitors (maleate, benzoate, butyrate and malonate) showing K(I)s in the range of 8.6-26.9 microM. L-Malate and pyruvate together with valerate were the less efficient Nce103 inhibitors (K(I)s of 87.7-94.0 microM), while the remaining carboxylates showed a compact behavior of efficient inhibitors (K(I)s in the range of 35.1-61.6 microM). Notably the inhibition profiles of the two fungal beta-CAs was very different from that of the ubiquitous host enzyme hCA II (belonging to the alpha-CA family), with maleate showing selectivity ratios of 113.6 and 115 for Can2 and Nce103, respectively, over hCA II inhibition. Therefore, maleate is a promising starting lead molecule for the development of better, low nanomolar, selective beta-CA inhibitors.
2009
17
2654
2657
A. Innocenti;R. A. Hall;C. Schlicker;F. A. Mühlschlegel;C. T. Supuran
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/776129
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 64
social impact