In this paper we prove the existence and uniqueness of a periodic solution for the Liénard equation x¨ + f (x) x˙ + x = 0. The classical Massera’s monotonicity assumptions, which are required in the whole line, are relaxed to the interval (alfa, delta), where alfa and delta can be easily determined. In the final part of the paper a simple perturbation criterion of uniqueness is presented.
An improvement of Massera’s theorem for the existence and uniqueness of a periodic solution for the Liénard equation / Gabriele Villari. - In: RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE. - ISSN 0049-4704. - STAMPA. - 44:(2012), pp. 187-195.
An improvement of Massera’s theorem for the existence and uniqueness of a periodic solution for the Liénard equation
VILLARI, GABRIELE
2012
Abstract
In this paper we prove the existence and uniqueness of a periodic solution for the Liénard equation x¨ + f (x) x˙ + x = 0. The classical Massera’s monotonicity assumptions, which are required in the whole line, are relaxed to the interval (alfa, delta), where alfa and delta can be easily determined. In the final part of the paper a simple perturbation criterion of uniqueness is presented.File | Dimensione | Formato | |
---|---|---|---|
K_VLfinal4.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
187.86 kB
Formato
Adobe PDF
|
187.86 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.