In this paper we prove the existence and uniqueness of a periodic solution for the Liénard equation x¨ + f (x) x˙ + x = 0. The classical Massera’s monotonicity assumptions, which are required in the whole line, are relaxed to the interval (alfa, delta), where alfa and delta can be easily determined. In the final part of the paper a simple perturbation criterion of uniqueness is presented.

An improvement of Massera’s theorem for the existence and uniqueness of a periodic solution for the Liénard equation / Gabriele Villari. - In: RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE. - ISSN 0049-4704. - STAMPA. - 44:(2012), pp. 187-195.

An improvement of Massera’s theorem for the existence and uniqueness of a periodic solution for the Liénard equation

VILLARI, GABRIELE
2012

Abstract

In this paper we prove the existence and uniqueness of a periodic solution for the Liénard equation x¨ + f (x) x˙ + x = 0. The classical Massera’s monotonicity assumptions, which are required in the whole line, are relaxed to the interval (alfa, delta), where alfa and delta can be easily determined. In the final part of the paper a simple perturbation criterion of uniqueness is presented.
2012
44
187
195
Gabriele Villari
File in questo prodotto:
File Dimensione Formato  
K_VLfinal4.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 187.86 kB
Formato Adobe PDF
187.86 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/788528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact