We introduce a partial order structure on the set of interval orders of a given size, and prove that such a structure is in fact a lattice. We also provide a way to compute meet and join inside this lattice. Finally, we show that, if we restrict to series parallel interval order, what we obtain is the classical Tamari poset.
A partial order structure on interval orders / Filippo Disanto; Luca Ferrari; Simone Rinaldi. - In: UTILITAS MATHEMATICA. - ISSN 0315-3681. - STAMPA. - 102:(2017), pp. 135-147.
A partial order structure on interval orders
FERRARI, LUCA;
2017
Abstract
We introduce a partial order structure on the set of interval orders of a given size, and prove that such a structure is in fact a lattice. We also provide a way to compute meet and join inside this lattice. Finally, we show that, if we restrict to series parallel interval order, what we obtain is the classical Tamari poset.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
tamafinalerevised.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
141.87 kB
Formato
Adobe PDF
|
141.87 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.