We introduce a partial order structure on the set of interval orders of a given size, and prove that such a structure is in fact a lattice. We also provide a way to compute meet and join inside this lattice. Finally, we show that, if we restrict to series parallel interval order, what we obtain is the classical Tamari poset.

A partial order structure on interval orders / Filippo Disanto; Luca Ferrari; Simone Rinaldi. - In: UTILITAS MATHEMATICA. - ISSN 0315-3681. - STAMPA. - 102:(2017), pp. 135-147.

A partial order structure on interval orders

FERRARI, LUCA;
2017

Abstract

We introduce a partial order structure on the set of interval orders of a given size, and prove that such a structure is in fact a lattice. We also provide a way to compute meet and join inside this lattice. Finally, we show that, if we restrict to series parallel interval order, what we obtain is the classical Tamari poset.
2017
102
135
147
Filippo Disanto; Luca Ferrari; Simone Rinaldi
File in questo prodotto:
File Dimensione Formato  
tamafinalerevised.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 141.87 kB
Formato Adobe PDF
141.87 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/812276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact