Cytochrome c undergoes structural variations during the apoptotic process; such changes have been related to modifications occurring in the protein when it forms a complex with cardiolipin, one of the phospholipids constituting the mitochondrial membrane. Although several studies have been performed to identify the site(s) of the protein involved in the cytochrome c−cardiolipin interaction, to date the location of this hosting region(s) remains unidentified and is a matter of debate. To gain deeper insight into the reaction mechanism, we investigate the role that the Lys72, Lys73, and Lys79 residues play in the cytochrome c−cardiolipin interaction, as these side chains appear to be critical for cytochrome c−cardiolipin recognition. The Lys72Asn, Lys73Asn, Lys79Asn, Lys72/73Asn, and Lys72/73/79Asn mutants of horse heart cytochrome c were produced and characterized by circular dichroism, ultraviolet−visible, and resonance Raman spectroscopies, and the effects of the mutations on the interaction of the variants with cardiolipin have been investigated. The mutants are characterized by a subpopulation with non-native axial coordination and are less stable than the wild-type protein. Furthermore, the mutants lacking Lys72 and/or Lys79 do not bind cardiolipin, and those lacking Lys73, although they form a complex with the phospholipid, do not show any peroxidase activity. These observations indicate that the Lys72, Lys73, and Lys79 residues stabilize the native axial Met80−Fe(III) coordination as well as the tertiary structure of cytochrome c. Moreover, while Lys72 and Lys79 are critical for cytochrome c−cardiolipin recognition, the simultaneous presence of Lys72, Lys73, and Lys79 is necessary for the peroxidase activity of cardiolipin-bound cytochrome c.

Role of Lysines in Cytochrome c−Cardiolipin Interaction / Federica Sinibaldi; Barry D. Howes; Enrica Droghetti; Fabio Polticelli; Maria Cristina Piro; Donato Di Pierro; Laura Fiorucci; Massimo Coletta; Giulietta Smulevich; and Roberto Santucci. - In: BIOCHEMISTRY. - ISSN 0006-2960. - STAMPA. - 52:(2013), pp. 4578-4588. [10.1021/bi400324c]

Role of Lysines in Cytochrome c−Cardiolipin Interaction

HOWES, BARRY DENNIS;DROGHETTI, ENRICA;SMULEVICH, GIULIETTA;
2013

Abstract

Cytochrome c undergoes structural variations during the apoptotic process; such changes have been related to modifications occurring in the protein when it forms a complex with cardiolipin, one of the phospholipids constituting the mitochondrial membrane. Although several studies have been performed to identify the site(s) of the protein involved in the cytochrome c−cardiolipin interaction, to date the location of this hosting region(s) remains unidentified and is a matter of debate. To gain deeper insight into the reaction mechanism, we investigate the role that the Lys72, Lys73, and Lys79 residues play in the cytochrome c−cardiolipin interaction, as these side chains appear to be critical for cytochrome c−cardiolipin recognition. The Lys72Asn, Lys73Asn, Lys79Asn, Lys72/73Asn, and Lys72/73/79Asn mutants of horse heart cytochrome c were produced and characterized by circular dichroism, ultraviolet−visible, and resonance Raman spectroscopies, and the effects of the mutations on the interaction of the variants with cardiolipin have been investigated. The mutants are characterized by a subpopulation with non-native axial coordination and are less stable than the wild-type protein. Furthermore, the mutants lacking Lys72 and/or Lys79 do not bind cardiolipin, and those lacking Lys73, although they form a complex with the phospholipid, do not show any peroxidase activity. These observations indicate that the Lys72, Lys73, and Lys79 residues stabilize the native axial Met80−Fe(III) coordination as well as the tertiary structure of cytochrome c. Moreover, while Lys72 and Lys79 are critical for cytochrome c−cardiolipin recognition, the simultaneous presence of Lys72, Lys73, and Lys79 is necessary for the peroxidase activity of cardiolipin-bound cytochrome c.
2013
52
4578
4588
Federica Sinibaldi; Barry D. Howes; Enrica Droghetti; Fabio Polticelli; Maria Cristina Piro; Donato Di Pierro; Laura Fiorucci; Massimo Coletta; Giulietta Smulevich; and Roberto Santucci
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/822402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 81
social impact