HIRESSS (HIgh REsolution Slope Stability Simulator) is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and on large areas using parallel computational techniques. The physical model proposed is composed of two parts: hydrological and geotechnical. The hydrological model receives the rainfall data as dynamical input and provides the pressure head as perturbation to the geotechnical stability model, that computes the factor of safety (FS) in probabilistic terms. The hydrological model is based on an analytical solution of an approximated form of the Richards equation under the wet condition hypothesis and it is introduced as a modeled form of hydraulic diffusivity to improve the hydrological response. The geothecnical stability model is based on an infinite slope model that takes into account the unsaturated soil condition. During the slope stability analysis the proposed model takes into account the increase in strength and cohesion due to matric suction in unsaturated soil, where the pressure head is negative. Moreover, the soil mass variation on partially saturated soil caused by water infiltration is modeled. The model is then inserted into a Monte Carlo simulation, to manage the typical uncertainty in the values of the input geotechnical and hydrological parameters, which is a common weak point of deterministic models. The Monte Carlo simulation manages a probability distribution of input parameters providing results in terms of slope failure probability. The developed software uses the computational power offered by multicore and multi processor hardware, from modern workstations to supercomputing facilities (HPC), to achieve the simulation in reasonable runtimes, compatible with civil protection real time monitoring. A first test of HIRESSS in three different areas is presented to evaluate the realibility of the results and the runtime performance on large areas.

A physically based slope stability simulator for HPC applications / Rossi G.; Segoni S.; Tofani V.; Catani F.. - In: GEOPHYSICAL RESEARCH ABSTRACTS. - ISSN 1607-7962. - ELETTRONICO. - (2013), pp. 13051-13051.

A physically based slope stability simulator for HPC applications

ROSSI, GUGLIELMO;SEGONI, SAMUELE;TOFANI, VERONICA;CATANI, FILIPPO
2013

Abstract

HIRESSS (HIgh REsolution Slope Stability Simulator) is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and on large areas using parallel computational techniques. The physical model proposed is composed of two parts: hydrological and geotechnical. The hydrological model receives the rainfall data as dynamical input and provides the pressure head as perturbation to the geotechnical stability model, that computes the factor of safety (FS) in probabilistic terms. The hydrological model is based on an analytical solution of an approximated form of the Richards equation under the wet condition hypothesis and it is introduced as a modeled form of hydraulic diffusivity to improve the hydrological response. The geothecnical stability model is based on an infinite slope model that takes into account the unsaturated soil condition. During the slope stability analysis the proposed model takes into account the increase in strength and cohesion due to matric suction in unsaturated soil, where the pressure head is negative. Moreover, the soil mass variation on partially saturated soil caused by water infiltration is modeled. The model is then inserted into a Monte Carlo simulation, to manage the typical uncertainty in the values of the input geotechnical and hydrological parameters, which is a common weak point of deterministic models. The Monte Carlo simulation manages a probability distribution of input parameters providing results in terms of slope failure probability. The developed software uses the computational power offered by multicore and multi processor hardware, from modern workstations to supercomputing facilities (HPC), to achieve the simulation in reasonable runtimes, compatible with civil protection real time monitoring. A first test of HIRESSS in three different areas is presented to evaluate the realibility of the results and the runtime performance on large areas.
2013
Rossi G.; Segoni S.; Tofani V.; Catani F.
File in questo prodotto:
File Dimensione Formato  
Rossi et al GRA vol 15 EGU 2013.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 32.45 kB
Formato Adobe PDF
32.45 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/823004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact