Lung cancer incidence over 2005-2010 for 326 Local Authority Districts in England is investigated by ecological regression. Motivated from misspecification of a Negative Binomial additive model, a semiparametric Negative Binomial M-quantile regression model is introduced. The additive part relates to those univariate or bivariate smoothing components, which are included in the model to capture nonlinearities in the predictor or to account for spatial dependence. All such components are estimated using penalized splines. The results show the capabilitiy of the semiparametric Negative Binomial M-quantile regression model to handle data with a strong spatial structure.

Semiparametric M-quantile Regression for count data / Dreassi, Emanuela; Ranalli, Maria Giovanna; Salvati, Nicola. - In: STATISTICAL METHODS IN MEDICAL RESEARCH. - ISSN 0962-2802. - STAMPA. - 23:(2014), pp. 591-610. [10.1177/0962280214536636]

Semiparametric M-quantile Regression for count data

DREASSI, EMANUELA;
2014

Abstract

Lung cancer incidence over 2005-2010 for 326 Local Authority Districts in England is investigated by ecological regression. Motivated from misspecification of a Negative Binomial additive model, a semiparametric Negative Binomial M-quantile regression model is introduced. The additive part relates to those univariate or bivariate smoothing components, which are included in the model to capture nonlinearities in the predictor or to account for spatial dependence. All such components are estimated using penalized splines. The results show the capabilitiy of the semiparametric Negative Binomial M-quantile regression model to handle data with a strong spatial structure.
2014
23
591
610
Dreassi, Emanuela; Ranalli, Maria Giovanna; Salvati, Nicola
File in questo prodotto:
File Dimensione Formato  
articolo_smmr3.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/836894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact