In this paper we describe a solution to multi-target data association problem based on l1-regularized sparse basis expansions. Assuming we have sufficient training samples per subject, our idea is to create a discriminative basis of observations that we can use to reconstruct and associate a new target. The use of l1-regularized basis expansions allows our approach to exploit multiple instances of the target when performing data association rather than relying on an average representation of target appearance. Preliminary experimental results on the PETS dataset are encouraging and demonstrate that our approach is an accurate and efficient approach to multi-target data association.

Multi-target Data Association Using Sparse Reconstruction / Andrew Bagdanov;Alberto Del Bimbo;Dario Di Fina;Svebor Karaman;Giuseppe Lisanti;Iacopo Masi. - ELETTRONICO. - 8157:(2013), pp. 239-248. (Intervento presentato al convegno International Conference on Image Analysis and Processing tenutosi a Napoli (Italia) nel 2013) [10.1007/978-3-642-41184-7_25].

Multi-target Data Association Using Sparse Reconstruction

BAGDANOV, ANDREW DAVID;DEL BIMBO, ALBERTO;DI FINA, DARIO;KARAMAN, SVEBOR;LISANTI, GIUSEPPE;MASI, IACOPO
2013

Abstract

In this paper we describe a solution to multi-target data association problem based on l1-regularized sparse basis expansions. Assuming we have sufficient training samples per subject, our idea is to create a discriminative basis of observations that we can use to reconstruct and associate a new target. The use of l1-regularized basis expansions allows our approach to exploit multiple instances of the target when performing data association rather than relying on an average representation of target appearance. Preliminary experimental results on the PETS dataset are encouraging and demonstrate that our approach is an accurate and efficient approach to multi-target data association.
2013
International Conference on Image Analysis and Processing – ICIAP 2013
International Conference on Image Analysis and Processing
Napoli (Italia)
2013
Andrew Bagdanov;Alberto Del Bimbo;Dario Di Fina;Svebor Karaman;Giuseppe Lisanti;Iacopo Masi
File in questo prodotto:
File Dimensione Formato  
81570239.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/854897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact