For a given minimal Legendrian submanifold $L$ of a Sasaki–Einstein manifold we construct two families of eigenfunctions of the Laplacian of $L$ and we give a lower bound for the dimension of the corresponding eigenspace. Moreover, in the case the lower bound is attained, we prove that $L$ is totally geodesic and a rigidity result about the ambient manifold. This is a generalization of a result for the standard Sasakian sphere done by Le and Wang.

On minimal Legendrian submanifolds of Sasaki-Einstein manifolds / Simone Calamai; David Petrecca. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - STAMPA. - 25:(2014), pp. 1-16. [10.1142/S0129167X14500839]

On minimal Legendrian submanifolds of Sasaki-Einstein manifolds

CALAMAI, SIMONE;PETRECCA, DAVID
2014

Abstract

For a given minimal Legendrian submanifold $L$ of a Sasaki–Einstein manifold we construct two families of eigenfunctions of the Laplacian of $L$ and we give a lower bound for the dimension of the corresponding eigenspace. Moreover, in the case the lower bound is attained, we prove that $L$ is totally geodesic and a rigidity result about the ambient manifold. This is a generalization of a result for the standard Sasakian sphere done by Le and Wang.
2014
25
1
16
Simone Calamai; David Petrecca
File in questo prodotto:
File Dimensione Formato  
1404.2467.pdf

accesso aperto

Tipologia: Preprint (Submitted version)
Licenza: Open Access
Dimensione 199.52 kB
Formato Adobe PDF
199.52 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/863495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact