A fault diagnosis procedure for analog linear circuits is presented. It uses an off-line trained neural network as a classifier. The innovative aspect of the proposed approach is the way the information provided by testability and ambiguity group determination is exploited when choosing the neural network architecture. The effectiveness of the proposed approach is shown by comparing with similar work that has already appeared in the literature.

NEURAL NETWORK-BASED ANALOG FAULT DIAGNOSIS USING TESTABILITY ANALYSIS / B. CANNAS; A. FANNI; S. MANETTI; A. MONTISCI; M.C. PICCIRILLI. - In: NEURAL COMPUTING & APPLICATIONS. - ISSN 0941-0643. - STAMPA. - 13:(2004), pp. 288-298. [10.1007/s00521-004-0423-2]

NEURAL NETWORK-BASED ANALOG FAULT DIAGNOSIS USING TESTABILITY ANALYSIS

MANETTI, STEFANO;PICCIRILLI, MARIA CRISTINA
2004

Abstract

A fault diagnosis procedure for analog linear circuits is presented. It uses an off-line trained neural network as a classifier. The innovative aspect of the proposed approach is the way the information provided by testability and ambiguity group determination is exploited when choosing the neural network architecture. The effectiveness of the proposed approach is shown by comparing with similar work that has already appeared in the literature.
2004
13
288
298
B. CANNAS; A. FANNI; S. MANETTI; A. MONTISCI; M.C. PICCIRILLI
File in questo prodotto:
File Dimensione Formato  
NeuralCA2004.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 412.89 kB
Formato Adobe PDF
412.89 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/8651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 24
social impact