The paper deals with the characterization of Hopf bifurcations in families of simple nonlinear systems, i.e., third-order autonomous systems with few nonlinear terms. By employing Harmonic Balance (HB) tools, the complete set of system parameters corresponding to supercritical and subcritical bifurcations is determined. In addition, it is shown how parameters defining supercritical bifurcations can be used as starting points in bifurcation analysis, in order to locate quite simple system able to display complex behaviours.

Hopf bifurcation analysis for simple third-order quadratic systems / Innocenti, Giacomo; Genesio, Roberto; Tesi, Alberto. - STAMPA. - Analysis and Control of Chaotic Systems, Volume 1, Part 1:(2006), pp. 227-232. (Intervento presentato al convegno 1st IFAC Conference on Analysis and Control of Chaotic Systems tenutosi a Reims, France nel 2006/06/28-30) [10.3182/20060628-3-FR-3903.00041].

Hopf bifurcation analysis for simple third-order quadratic systems

INNOCENTI, GIACOMO;GENESIO, ROBERTO;TESI, ALBERTO
2006

Abstract

The paper deals with the characterization of Hopf bifurcations in families of simple nonlinear systems, i.e., third-order autonomous systems with few nonlinear terms. By employing Harmonic Balance (HB) tools, the complete set of system parameters corresponding to supercritical and subcritical bifurcations is determined. In addition, it is shown how parameters defining supercritical bifurcations can be used as starting points in bifurcation analysis, in order to locate quite simple system able to display complex behaviours.
2006
Proceedings of the 1st IFAC Conference on Analysis and Control of Chaotic Systems
1st IFAC Conference on Analysis and Control of Chaotic Systems
Reims, France
2006/06/28-30
Innocenti, Giacomo; Genesio, Roberto; Tesi, Alberto
File in questo prodotto:
File Dimensione Formato  
REIMS2006.pdf

Accesso chiuso

Descrizione: Pre-print
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 815.22 kB
Formato Adobe PDF
815.22 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/867710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact