We give a more elementary proof of a result by Ambrosio, Fusco and Hutchinson to estimate the Hausdorff dimension of the singular set of minimizers of the Mumford-Shah energy (see [2, Theorem 5.6]). On the one hand, we follow the strategy of the above mentioned paper; but on the other hand our analysis greatly simplifies the argument since iit relies on the compactness result proved by the first two Authors in [4, Theorem 13] for sequences of local minimizers with vanishing gradient energy, and the regularity theory of minimal Caccioppoli partitions, rather than on the corresponding results for Almgren’s area minimizing sets.

A note on the Hausdorff dimension of the singular set for minimizers of the Mumford-Shah energy / Camillo De Lellis; Matteo Focardi; Berardo Ruffini. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - STAMPA. - 7:(2014), pp. 539-545. [10.1515/acv-2013-0107]

A note on the Hausdorff dimension of the singular set for minimizers of the Mumford-Shah energy

FOCARDI, MATTEO;
2014

Abstract

We give a more elementary proof of a result by Ambrosio, Fusco and Hutchinson to estimate the Hausdorff dimension of the singular set of minimizers of the Mumford-Shah energy (see [2, Theorem 5.6]). On the one hand, we follow the strategy of the above mentioned paper; but on the other hand our analysis greatly simplifies the argument since iit relies on the compactness result proved by the first two Authors in [4, Theorem 13] for sequences of local minimizers with vanishing gradient energy, and the regularity theory of minimal Caccioppoli partitions, rather than on the corresponding results for Almgren’s area minimizing sets.
2014
7
539
545
Camillo De Lellis; Matteo Focardi; Berardo Ruffini
File in questo prodotto:
File Dimensione Formato  
DeLellis@Focardi@Ruffini-Revised.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Open Access
Dimensione 173.57 kB
Formato Adobe PDF
173.57 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/876728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact