We study an inverse boundary value problem for the Helmholtz equation using the Dirichlet-to-Neumann map as the data. We consider piecewise constant wavespeeds on an unknown tetrahedral partition and prove a Lipschitz stability estimate in terms of the Hausdorff distance between partitions.
Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation / Elena Beretta; Maarten V. de Hoop; Elisa Francini; Sergio Vessella. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 40:(2015), pp. 1365-1392. [10.1080/03605302.2015.1007379]
Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation
FRANCINI, ELISA;VESSELLA, SERGIO
2015
Abstract
We study an inverse boundary value problem for the Helmholtz equation using the Dirichlet-to-Neumann map as the data. We consider piecewise constant wavespeeds on an unknown tetrahedral partition and prove a Lipschitz stability estimate in terms of the Hausdorff distance between partitions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BDHFV1408.1569v1.pdf
accesso aperto
Descrizione: Manoscritto originale dell'autore
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
759.72 kB
Formato
Adobe PDF
|
759.72 kB | Adobe PDF | |
berettadehoopfrancinivessella2015.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
359.46 kB
Formato
Adobe PDF
|
359.46 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.