Let (M;g) be a pseudo-Riemannian manifold with a torsion free linear connection and let Jg be the generalized complex structure on M defined by g. We prove that in the case Jg is integrable the i and -i eigenbundles of Jg are complex Lie algebroids. Moreover we define the concept of generalized de bar operator and we describe a class of generalized holomorphic sections. Also we relate Lie bialgebroid property to conditions on the metric g in the case of Hessian manifolds.
Generalized geometry of pseudo Riemannian manifolds and generalized debar operator / Nannicini Antonella. - In: ADVANCES IN GEOMETRY. - ISSN 1615-715X. - STAMPA. - 16:(2016), pp. 165-173. [10.1515/advgeom-2016-0001]
Generalized geometry of pseudo Riemannian manifolds and generalized debar operator
Nannicini Antonella
2016
Abstract
Let (M;g) be a pseudo-Riemannian manifold with a torsion free linear connection and let Jg be the generalized complex structure on M defined by g. We prove that in the case Jg is integrable the i and -i eigenbundles of Jg are complex Lie algebroids. Moreover we define the concept of generalized de bar operator and we describe a class of generalized holomorphic sections. Also we relate Lie bialgebroid property to conditions on the metric g in the case of Hessian manifolds.File | Dimensione | Formato | |
---|---|---|---|
10.1515_advgeom-2016-0001.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
393.96 kB
Formato
Adobe PDF
|
393.96 kB | Adobe PDF | Richiedi una copia |
generalized.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
152.69 kB
Formato
Adobe PDF
|
152.69 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.