The main results of the present paper consist in some quantitative estimates for solutions to the wave equation u_{tt}−div (A(x)∇u) = 0. Such estimates imply the following strong unique continuation properties: (a) if u is a solution to the the wave equation and u is flat on a segment {0}xJ on the t axis, then u vanishes in a neigh- borhood of {0}xJ. (b) Let u be a solution of the above wave equation in Q× J that vanishes on a a portion Z × J where Z is a portion of the boundary of Q and u is flat on a segment {0} × J, 0 ∈ Z, then u vanishes in a neighborhood of {0} × J.

Quantitative estimates of strong unique continuation for wave equations / Sergio Vessella. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 364:(2017), pp. 135-164. [10.1007/s00208-016-1383-4]

Quantitative estimates of strong unique continuation for wave equations

VESSELLA, SERGIO
2017

Abstract

The main results of the present paper consist in some quantitative estimates for solutions to the wave equation u_{tt}−div (A(x)∇u) = 0. Such estimates imply the following strong unique continuation properties: (a) if u is a solution to the the wave equation and u is flat on a segment {0}xJ on the t axis, then u vanishes in a neigh- borhood of {0}xJ. (b) Let u be a solution of the above wave equation in Q× J that vanishes on a a portion Z × J where Z is a portion of the boundary of Q and u is flat on a segment {0} × J, 0 ∈ Z, then u vanishes in a neighborhood of {0} × J.
2017
364
135
164
Goal 17: Partnerships for the goals
Sergio Vessella
File in questo prodotto:
File Dimensione Formato  
Quantitative_SUCP_wave.pdf

Accesso chiuso

Descrizione: file pdf
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 864.93 kB
Formato Adobe PDF
864.93 kB Adobe PDF   Richiedi una copia
4-Quantitative_SUCP_wave_versione-referata.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 621.38 kB
Formato Adobe PDF
621.38 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/906407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact